首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrate inhibits symbiotic N2 fixation and a number of hypotheses concerned with NO3 assimilation have been suggested to explain this inhibition. These hypotheses were tested using a pea ( Pisum sativum L. cv. Juneau) with normal nitrate reductase NR; (EC 1,6,6,4) activity and two mutants of cv. Juneau, A317 and A334, with impaired NR activity. The plants were inoculated with three strains of Rhizobium leguminosarum and grown for 3 weeks in N-free medium, followed by 1 week in medium supplemented with 0, 5 or 10 m M KNO3 before harvesting. NO3 was taken up at comparable rates by the parent and the mutants and accumulated in leaf and stem tissue of the latter. Acetylene reduction rates were inhibited similarly in both the parent and mutants in the presence of KNO3 but there were differences among rhizobial strains. Starch concentration of the nodules decreased by 46% in the presence of KNO3 and there were differences among rhizobial strains but not among pea genotypes. Malate and succinate accumulated in nodules in the presence of KNO3. These data are not consistent with the photosynthate deprivation hypothesis as a primary mechanism for NO3 inhibition of N2 fixation since NO3 affected the nodule carbohydrate composition of all three pea genotypes in a similar manner. The lack of correlation between NR activity and NO3 inhibition of N2 fixation suggests that NO3 assimilation may be only indirectly involved in the inhibition phenomenon.  相似文献   

2.
Abstract A method has been developed for screening Rhizobium leguminosarum wild-type strains and mutants for uptake hydrogenase (Hup) activity, using H2-dependent methylene blue reduction. For this purpose, a simple device has been constructed which allows the simultaneous screening of 6 strains and 6 controls. Bacteroids of R. leguminosarum isolated from pea root nodules were suspended in buffer containing methylene blue and inhibitors of dehydrogenases. The suspensions were first sparged with argon (to remove oxygen) and then with hydrogen.  相似文献   

3.
The effect of genetic factors in Rhizobium on host plant biomass production and on the carbon costs of N2 fixation in pea root nodules was studied. Nine strains of Rhizobium leguminosarum were constructed, each containing one of three symbiotic plasmids in combination with one of three different genomic backgrounds. The resulting strains were tested in symbiosis with plants of Pisum sativum using a flow-through apparatus in which nodule nitrogenase activity and respiration were measured simultaneously under steady state conditions. Nodules formed by strains containing the background of JI6015 had the lowest carbon costs of N2 fixation (7.10–8.10 μmol C/μmol N2), but shoot dry weight of those plants was also smaller than that of plants nodulated by strains with the background of B151 or JI8400. Nodules formed by these two strain types had carbon costs of N2 fixation varying between 11.26 and 13.95 μmol C/μmol N2. The effect of symbiotic plasmids on the carbon costs was relatively small. A time-course experiment demonstrated that nodules formed by a strain derived from JI6015 were delayed in the onset of nitrogenase activity and had a lower rate of activity compared to nodules induced by a strain with the background of B151. The relationship between nitrogenase activity, carbon costs of N2 fixation and host plant biomass production is discussed.  相似文献   

4.
Expression of Bradyrhizobium japonicum wild-type strain USDA110 nirK , norC and nosZ denitrification genes in soybean root nodules was studied by in situ histochemical detection of β -galactosidase activity. Similarly, PnirK- lacZ , PnorC- lacZ , and PnosZ- lacZ fusions were also expressed in bacteroids isolated from root nodules. Levels of β -galactosidase activity were similar in both bacteroids and nodule sections from plants that were solely N2-dependent or grown in the presence of 4 m M KNO3. These findings suggest that oxygen, and not nitrate, is the main factor controlling expression of denitrification genes in soybean nodules. In plants not amended with nitrate, B. japonicum mutant strains GRK308, GRC131, and GRZ25, that were altered in the structural nirK , norC and nosZ genes, respectively, showed a wild-type phenotype with regard to nodule number and nodule dry weight as well as plant dry weight and nitrogen content. In the presence of 4 m M KNO3, plants inoculated with either GRK308 or GRC131 showed less nodules, and lower plant dry weight and nitrogen content, relative to those of strains USDA110 and GRZ25. Taken together, the present results revealed that although not essential for nitrogen fixation, mutation of either the structural nirK or norC genes encoding respiratory nitrite reductase and nitric oxide reductase, respectively, confers B. japonicum reduced ability for nodulation in soybean plants grown with nitrate. Furthermore, because nodules formed by each the parental and mutant strains exhibited nitrogenase activity, it is possible that denitrification enzymes play a role in nodule formation rather than in nodule function.  相似文献   

5.
There were significant levels of in vitro hydrogenase activity in Methanosarcina strains. The multiple forms of hydrogenase were observed in cell free extracts of cells grown on methanol. Strains having poor growth on H2 : CO2 had four forms while strains having normal growth on all substrates contained two forms of hydrogenase. These multiple forms differ in their charges as well as in their composition of transition metal ions. The strain having normal growth showed higher incorporation of 63Ni2+ and 65Zn2+. Both hydrogenases, A and D, of strain P3 had methylviologen and F420-reducing activity and contained Zn2+ and Co2+ respectively. Hydrogenases A and D of strains P1 and P4 also had similar characteristics whereas hydrogenases B and C had only methylviologen reducing activity.  相似文献   

6.
Thirteen Rhizobium leguminosarum strains previously reported as H(2)-uptake hydrogenase positive (Hup) or negative (Hup) were analyzed for the presence and conservation of DNA sequences homologous to cloned Bradyrhizobium japonicum hup-specific DNA from cosmid pHU1 (M. A. Cantrell, R. A. Haugland, and H. J. Evans, Proc. Natl. Acad. Sci. USA 80:181-185, 1983). The Hup phenotype of these strains was reexamined by determining hydrogenase activity induced in bacteroids from pea nodules. Five strains, including H(2) oxidation-ATP synthesis-coupled and -uncoupled strains, induced significant rates of H(2)-uptake hydrogenase activity and contained DNA sequences homologous to three probe DNA fragments (5.9-kilobase [kb] HindIII, 2.9-kb EcoRI, and 5.0-kb EcoRI) from pHU1. The pattern of genomic DNA HindIII and EcoRI fragments with significant homology to each of the three probes was identical in all five strains regardless of the H(2)-dependent ATP generation trait. The restriction fragments containing the homology totalled about 22 kb of DNA common to the five strains. In all instances the putative hup sequences were located on a plasmid that also contained nif genes. The molecular sizes of the identified hup-sym plasmids ranged between 184 and 212 megadaltons. No common DNA sequences homologous to B. japonicum hup DNA were found in genomic DNA from any of the eight remaining strains showing no significant hydrogenase activity in pea bacteroids. These results suggest that the identified DNA region contains genes essential for hydrogenase activity in R. leguminosarum and that its organization is highly conserved within Hup strains in this symbiotic species.  相似文献   

7.
In vivo H2 evolution by Anabaena cylindrica Lemm. strain PCC 7122 grown in the presence of ammonia at low and high light intensities was studied. We found that after 2 h of anaerobic incubation, H2 evolution [at a rate of 0.5 μmol (mg dry weight)1 h−1] via reversible hydrogenase occurred in high light grown cells, while this kind of activity was not found in low light grown cells. H2 evolution was inhibited by 3-(3'. 4'-dichlorophenyl-1, 1-dimethylurea (DCMU). Illuminating the cells in the phycocyanin absorption region resulted in a higher rate of H2 evolution than illuminating the cells in the chlorophyll absorption region. The results indicate that reversible hydrogenase receives reducing equivalents from photosynthetic water photolysis and that both photosystem II and photosystem I participate in the H2 production. Hydrogenase activity was found in the soluble fraction after mild sonication in the case of low light grown cells. After this treatment high light grown cells retained 70% of their hydrogenase activity in the particulate fraction, but released it into the soluble fraction in the presence of 2% deoxycholic acid.
In vitro H2 evolution did not differ significantly in the low and high light grown cells. Hence, the differences in the in vivo H2 evolution reflect the different availability of endogenous reductants for hydrogenase in the two kinds of cells. On the basis of our results it is suggested that high light grown Anabaena cells eliminate part of the photosynthetically produced excess electrons via an induced reversible hydrogenase activity. This is the first report of H2 evolution associated with water photolysis and catalyzed by hydrogenase in cyanobacteria.  相似文献   

8.
Five free-living Frankia strains isolated from Casuarina were investigated for occurrence of hydrogenase activity. Nitrogenase activity (acetylene reduction) and hydrogen evolution were also evaluated. Acetylene reduction was recorded in all Frankia strains. None of the Frankia strains had any hydrogenase activity when grown on nickel-depleted medium and they released hydrogen in atmospheric air. After addition of nickel to the medium, the Frankia strains were shown to possess an active hydrogenase, which resulted in hydrogen uptake but no hydrogen evolution. The hydrogenase activity in Frankia strain KB5 increased from zero to 3.86 μ mol H2 (mg protein)−1 h−1 after addition of up to 1.0 μ M Ni. It is likely that the hydrogenase activity could be enhanced even more as a response on further addition of Ni. It is indicated in this study that absence of hydrogenase activity in free-living Frankia isolated from Casuarina spp. is due to nickel deficiency. Frankia living in symbiosis with Casuarina spp. show hydrogenase activity. Therefore, the results also indicate that the hydrogenase to some extent is regulated by the host plant and/or that the host plant supplies the symbiotic microorganism with nickel. Moreover, the result shows that this Frankia is somewhat different from Frankia isolated from Alnus incana and Comptonia peregrina ., i.e., Frankia isolated from A. incana and C. peregrina showed a small hydrogen uptake activity even without addition of nickel.  相似文献   

9.
10.
Initial observations showed a 100% increase in H2-uptake (Hup) activity of Rhizobium leguminosarum strain 3855 in pea root nodules (Pisum sativum L. cv Alaska) on plants growing in a baked clay substrate relative to those growing in vermiculite, and an investigation of nutrient factors responsible for the phenomenon was initiated. Significantly greater Hup activity was first measured in the clay-grown plants 24 days after germination, and higher activity was maintained relative to the vermiculite treatment until experiments were terminated at day 32. The increase in Hup activity was associated with a decrease in H2 evolution for plants with comparable rates of acetylene reduction. Analyses of the clay showed that it contained more Na+ (29 versus 9 milligrams per kilogram) and less K+ (6 versus 74 milligrams per kilogram) than the vermiculite. Analyses of plants, however, showed a large increase in Na+ concentration of clay-grown plants with a much smaller reduction in K+ concentration. In tests with the same organisms in a hydroponic system with controlled pH, 40 millimolar NaCl increased Hup activity more than 100% over plants grown in solutions lacking NaCl. Plants with increased Hup activity, however, did not have greater net carbon or total nitrogen assimilation. KCl treatments from 5 to 80 millimolar produced slight increased in Hup activity at 10 millimolar KCl, and tests with other salts in the hydroponic system indicated that only Na+ strongly promoted Hup activity. Treating vermiculite with 50 millimolar NaCl increased Na+ concentration in pea plant tissue and greatly promoted Hup activity of root nodules in a manner analogous to the original observation with the clay rooting medium. A wider generality of the phenomenon was suggested by demonstrating that exogenous Na+ increased Hup activity of other R. leguminosarum strains and promoted Hup activity of R. meliloti strain B300 in alfalfa (Medicago sativa L.).  相似文献   

11.
Rhizobium leguminosarum bv. viciae UPM791 induces hydrogenase activity in pea (Pisum sativum L.) bacteroids but not in free-living cells. The symbiotic induction of hydrogenase structural genes (hupSL) is mediated by NifA, the general regulator of the nitrogen fixation process. So far, no culture conditions have been found to induce NifA-dependent promoters in vegetative cells of this bacterium. This hampers the study of the R. leguminosarum hydrogenase system. We have replaced the native NifA-dependent hupSL promoter with the FnrN-dependent fixN promoter, generating strain SPF25, which expresses the hup system in microaerobic free-living cells. SPF25 reaches levels of hydrogenase activity in microaerobiosis similar to those induced in UPM791 bacteroids. A sixfold increase in hydrogenase activity was detected in merodiploid strain SPF25(pALPF1). A time course induction of hydrogenase activity in microaerobic free-living cells of SPF25(pALPF1) shows that hydrogenase activity is detected after 3 h of microaerobic incubation. Maximal hydrogen uptake activity was observed after 10 h of microaerobiosis. Immunoblot analysis of microaerobically induced SPF25(pALPF1) cell fractions indicated that the HupL active form is located in the membrane, whereas the unprocessed protein remains in the soluble fraction. Symbiotic hydrogenase activity of strain SPF25 was not impaired by the promoter replacement. Moreover, bacteroids from pea plants grown in low-nickel concentrations induced higher levels of hydrogenase activity than the wild-type strain and were able to recycle all hydrogen evolved by nodules. This constitutes a new strategy to improve hydrogenase activity in symbiosis.  相似文献   

12.
13.
Actinorhizal nodules do not usually evolve H2 due to the action of an uptake hydrogenase. We have found that nodules of several Frankia symbioses evolved large amounts of H2 gas when returned to air following exposure to 10 kPa C2HT2 during an acetylene reduction assay. Increased H2 evolution in air persisted for several days when intact root systems of Alnus incana (L.) Moench (inoculated with Frankia UGL 011101) were treated with 10 kPa C.H2 for 1 h. Full recovery of uptake hydrogenase activity required 4 to 8 days. Studies with crude homogenates of nodules of the same plants showed that hydrogenase (measured amperometrically with phenazine metho-sulfate as electron acceptor) was directly affected, since activity in treated nodules was only 10% of that in untreated nodules. A survey of actinorhizal symbioses revealed variation in the effect of an acetylene reduction assay on hydrogen metabolism. Nodules of three species, including Alnus rubra Bong, inoculated with Frankia HFPArD. showed complete inactivation of hydrogenase. H2 evolution in air was 25% of the C2H2 reduction rate and H, evolution in Ar/O2 was equal to the QH2 reduction rate. Two symbioses, Ceanothus americanus L. (soil inoculant) and Batista glomerata Baill. (soil inoculant) showed no change following an acetylene reduction assay. A third group of symbioses showed an intermediate response.  相似文献   

14.
The role of uptake hydrogenase was studied in Rhizobium leguminosarum bacteroids from the nodules of Pisum sativum L. cv. Homesteader. Uptake hydrogenase activity, measured by the 3H2 uptake method, was dependent on O-consumption and was similar to H2 uptake measured by gas chromatography. Km for O2 of 0.0007 atm (0.0709 kPa) and a Km for H2 of 0.0074 atm (0.7498, kPa) were determined. H2 increased the rate of endogenous respiration by isolates with uptake hydrogenase (Hup+) but had no effect on an isolate lacking uptake hydrogenase (Hup-). A survey of 14 Hup+ isolates indicated a wide range of H2 uptake activities. Four of the isolates tested had activities similar to or higher than those found in two Hup+ Rhizobium japonicum strains. H2 uptake was strongly coupled to ATP formation in only 5 of the 14 isolates. H2 increased the optimal O2 level of C2H2 reduction by 0.01 atm and permitted enhanced C2H2 reduction at O2 levels above the optimum in both a coupled and an uncoupled isolate. At suboptimal O2 concentrations a small enhancement of C2H2 reduction by H2 was seen in two out of three isolates in which H2 oxidation was coupled to ATP formation. Thus, the main function of uptake hydrogenase in R. leguminosarum appears to be in the protection of nitrogenase from O2 damage.  相似文献   

15.
Nitrate reductase (EC 1.6.6.1–3; NR) activity was evaluated in nodulated lucerne ( Medicago sativa L. cv. Europe) grown aeroponically in both the presence and absence of applied nitrogen. Determination of in vivo NR activity was done with organ pieces in 0.1 M K+-phosphate, pH 7.5, 0.1 M KNO3 and 1% n -propanol. NR activity was detected in all plant parts. Leaves accounted for 40% of the whole plant activity. Root activity was as high as leaf activity. Stem NR activity accounted for 14 to 20% of the total plant activity. NR activity was also detected in symbolically dependent plants grown without combined nitrogen. Nodule NR in symbolically dependent plants accounted for 17% of the tolal plant aclivity. When nitrate was present in the nulrienl medium, NR increased 5-fold as compared lo N2-dependenl plants. Varying levels of nitrale (1.65 to 4 m M ) had no influence on leaf or stem activities. However, root NR activity seemed to be related to the nitrale concentration in the nulrient medium. Throughoul inilial vegelative growth, in vivo NR and nitrogenase (acelylene reduction) increased simultaneously. After shoot harvest, nitrogenase (acetylene reduction) aclivity drastically decreased with reduction of photosynthate supply, whereas NR increased in all organs, especially in N2-dependenl plants.  相似文献   

16.
Enzyme activities involved in nitrate assimilation were analyzed from crude leaf extracts of wild-type (cv. Williams) and mutant ( nr1 ) soybean [ Glycine max (L.) Merr.] plants lacking constitutive nitrate reductase (NR) activity. The nr1 soybean mutant (formerly LNR-2), had decreased NADH-NR, FMNH2-NR and cytochrome c reductase activities, all of which were associated with the loss of constitutive NR activity. Measurement of FMNH2-NR activity, by nitrite determination, was accurate since nitrite reductase could not use FMNH2 as a reductant source. Nitrite reductase activity was normal in the nr1 plant type in the presence of reduced methyl viologen. Assuming that constitutive NR is similar in structure to nitrate reductases from other plants, presence of xanthine dehydrogenase activity and loss of cytochrome c reductase activity indicated that the apoprotein and not the molybdenum cofactor had been affected in the constitutive enzyme of the mutant. Constitutive NR from urea-grown wild-type plants had 1) greater ability to use FMNH2 as an electron donor, 2) a lower pH optimum, and 3) decreased ability to distinguish between NO3 and HCO3, compared with inducible NR from NO3-grown nr1 plants. The presence in soybean leaves of a nitrate reductase with a pH optimum of 7.5 is contrary to previous reports and indicates that soybean is not an exception among higher plants for this activity.  相似文献   

17.
Addition of NO3 rapidly induced senescence of root nodules in alfalfa ( Medicago sativa L. cv. Aragon). Loss of nodule dry matter began at the lowest NO3 concentration (10 m M ) but degradation of bacteroid proteins was only detected when nodules were supplied with NO3 concentrations above 20 m M .
Bacteroids from Rhizobium meliloti contained high specific activities of nitrate reductase (NR) and nitrite reductase (NiR). Both enzymes were presumably substrate-induced although substantial enzyme activities were present in the absence of NO3 Typical specific activities for soluble NR and NiR of bacteroids under NO3 free conditions were 1.2 and 1.4 μmol (mg protein)−1h−1, respectively. In the presence of NO3, the specific activity of NR was considerably greater than that of NiR, thus causing NO2 accumulation in bacteroids. Nitrite levels in the bacteroids were linearly correlated with specific activities of NR and NiR, indicating that NO2 is formed by bacteroid NR and that this NO2 in turn, induces bacteroid NiR. Accumulation of NO2 within bacteroids also indicates that NO2 inhibits nodule activity after feeding plants with NO3  相似文献   

18.
Abstract. Two anatomical variants of Panicum maximum Jacq. were observed to accumulate an unusually large number of starch grains in the bundle sheath chloroplasts when grown under controlled environmental conditions in a nutrient medium containing a low level of nitrate nitrogen (20 mg N dm−3 as KNO3). When these plants were placed under dark conditions the chloroplasts were destarched, but exhibited a marked distortion of the thylakoid membranes. Under a higher level of nitrate nitrogen supply (200 mg N dm−3 as KNO3) the number of starch grains was markedly reduced compared to that observed above in both plant variants. When the nitrogen was supplied as ammonium nitrogen (200 mg N dm−3 as NH4Cl) there was again a high level of starch in the bundle sheath chloroplasts, the level being only slightly lower than that observed at the low KNO3 supply. An unusually large number of starch grains accumulated in the bundle sheath chloroplasts in the absence of added phosphorus in the nutrient medium, in the presence of the higher nitrate nitrogen level. It is suggested that the increased starch accumulation results from a reduced trans-location of Calvin cycle intermediates out of the chloroplasts into the cytoplasm and that both nitrate nitrogen and phosphorus may play an important role in this process. A good correlation between high net photosynthetic activity and low bundle sheath starch content was observed. Nutrient medium requirements favouring low starch content in chloroplasts also favoured high net photosynthetic rates.  相似文献   

19.
The effects of potassium nitrate (KNO3) application on Phytophthora stem rot disease reduction of Glycine max (L.) Merr. cvs. Chusei-Hikarikuro and Sachiyutaka, and mycelium growth and zoospore release of a Phytophthora sojae isolate were investigated under laboratory conditions. The application of 4–30 m m KNO3 prior to inoculation greatly reduced incidence of disease in the two soybean cultivars. Although a concentration of 20–30 m m KNO3 led to a slight decrease in the growth rate of the PJ-H30 isolate on PDA medium, no significant relationship was observed between inhibition of the growth rate and disease reduction on application of 0.4–10 m m KNO3. Disease suppression recorded in laboratory experiments using pathogen mycelium was due to the response of plant tissues rather than a direct inhibition of pathogen hyphal growth by the application of KNO3. The extent of disease reduction was related to increased potassium concentration in plants of the two cultivars (except for some cases involving cv. Sachiyutaka), suggesting that differences existed between the two cultivars in terms of the effect of KNO3 application on disease suppression. Scanning electron microscopic observation with fresh samples indicated marked accumulation of potassium at the penetration-stopping sites of P. sojae in the cortex layer of soybean plants treated with 30 m m KNO3, compared with the non-treated control plants. The presence of 0.4–30 m m KNO3 decreased the release of zoospores. These results suggest the possibility of applying a solution containing 20–30 m m of KNO3 to decrease the incidence of disease in agricultural fields by the response of plant tissues to KNO3.  相似文献   

20.
The responses of three species of nitrogen-fixing trees to CO2 enrichment of the atmosphere were investigated under nutrient-poor conditions. Seedlings of the legume, Robinia pseudoacacia L. and the actinorhizal species, Alnus glutinosa (L.) Gaertn. and Elaeagnus angustifolia L. were grown in an infertile forest soil in controlled-environment chambers with atmospheric CO2 concentrations of 350 μl −1 (ambient) or 700 μl −1. In R. pseudoacacia and A. glutinosa , total nitrogenase (N2 reduction) activity per plant, assayed by the acetylene reduction method, was significantly higher in elevated CO2, because the plants were larger and had more nodule mass than did plants in ambient CO2. The specific nitrogenase activity of the nodules, however, was not consistently or significantly affected by CO2 enrichment. Substantial increases in plant growth occurred with CO2 enrichment despite probable nitrogen and phosphorus deficiencies. These results support the premises that nutrient limitations will not preclude growth responses of woody plants to elevated CO2 and that stimulation of symbiotic activity by CO2 enrichment of the atmosphere could increase nutrient availability in infertile habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号