首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   0篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2010年   3篇
  2009年   4篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1992年   3篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1986年   2篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
排序方式: 共有55条查询结果,搜索用时 203 毫秒
1.
High-affinity uptake of [3H]-aminobutyric acid (GABA) was studied in cultures of neonatal rat cortical neurons grown on pre-formed monolayers of non-neuronal (glial) cells. Both the maximum rate (V max) and, to a smaller extent, theK m of [3H]GABA uptake increased with time. In addition, in parallel with these changes, 2,4-diaminobutyric acid and cis-3-aminocyclohexane-1-carboxylic acid (ACHC), compounds which are considered typical substrate/inhibitors of GABA uptake in neurons, became progressively stronger inhibitors of [3H]GABA uptake. Consequently, the present results may mean that the studies using uptake, of [3H]GABA, [3H]ACHC, or [3H]DABA as a specific marker for GABAergic neurons differentiating during the ontogenetic development of the central nervous system may have to be interpreted with caution.  相似文献   
2.
A method which is claimed to be able to determine the proportion of true GABA within radiolabeled GABA used in binding studies was tested using [3H]GABA. The method was found to be unsuitable for3H-labeled GABA and, furthermore, both theoretical considerations and the present experimental data indicated that it could also produce misleading results with [14C]GABA.  相似文献   
3.
V J Balcar 《FEBS letters》1992,300(3):203-207
Uptake of 1 microM [3H]L-glutamate by cultured 3T3 fibroblasts was strongly dependent on extracellular Na+; it was reduced by elevated concentrations of K+ (60 mM) but it was not influenced by variations in the concentration of Ca2+ (0-9.6 mM). D- and L-Asparate, D- and L-threo-3-hydroxyaspartate DL-threo-3-methylaspartate and a few other glutamate derivatives and analogues inhibited the uptake but several close analogues of L-glutamate (including D-glutamate) had no effect, implying that the uptake system is highly structurally selective. The recently identified inhibitor of glutamate uptake in synaptosomal preparations, L-trans-pyrrolidine-2,4-dicarboxylate, was also among the inhibitors. Apparent Km of the uptake was found to be less than 10 microM. The present observations indicate that Na(+)-dependent 'high-affinity' uptake of L-glutamate may appear in structures which are apparently unrelated to glutamatergic synaptic transmission in the CNS.  相似文献   
4.
V J Balcar  Y Li 《Life sciences》1992,51(19):1467-1478
Characteristics of high affinity uptake of L-glutamate are examined in order to evaluate the possible use of the uptake of [3H]L-glutamate, [3H]L-aspartate or any other suitable [3H]-labelled substrate as a marker for glutamatergic and aspartergic synapses in autoradiographic studies in the mammalian brain. Review of data on substrate specificity indicates the presence of at least two high affinity uptake systems specific for acidic amino acids in the central nervous tissue; one which takes up L-glutamate and L-aspartate and the other which is selective for L-glutamate only. Studies on ionic requirements, too, point to the existence of at least two distinct uptake systems with high affinity for L-glutamate. The Na(+)-dependent uptake system(s) handle(s) both L-glutamate and L-aspartate whereas the Na(+)-independent uptake system(s) show(s) selectivity for L-glutamate only. Available data do not favour the Na(+)-dependent binding of [3H]D-aspartate to thaw-mounted sections of frozen brain tissue as a suitable marker for glutamatergic/aspartergic synaptic nerve endings. However, there are reasons--such as the results of lesion studies and the existence of uptake sites which have a higher affinity for L-aspartate than for D-aspartate--to suggest that Na(+)-dependent binding of [3H]L-aspartate, rather than that of [3H]D-aspartate, should be further investigated as a possible marker for the glutamatergic/aspartergic synapses in the autoradiographic studies using sections of frozen brain.  相似文献   
5.
Both glial and neuronal cells maintained in primary culture were found to accumulate [3H]GABA by an efficient high-affinity uptake system (apparentK m=9 M,V max=0.018 and 0.584 nmol/mg/min, respectively) which required sodium ions and was inhibited by 1 mM ouabain. Strychnine and parachloromercuriphenylsulfonate (pCS) (both at 1 mM) also strongly inhibited uptake of [3H]GABA, but metabolic inhibitors (2,4-dinitrophenol, potassium cyanide, and malonate) were without effect. Only three structural analogs of GABA (nipecotate, -alanine, and 2,4-diaminobutyrate) inhibited uptake of [3H]GABA, while several other compounds with structural similarities to GABA (e.g. glycine,l-proline, and taurine) did not interact with the system. The kinetic studies indicated presence of a second uptake (K m=92 M,V max=0.124 nmol/mg/min) in the primary cultures containing predominantly glioblasts. On the other hand, only one of the neuronal cell lines transformed by simian virus SV40 appeared to accumulate [3H]GABA against a concentration gradient. ApparentK m of this uptake was relatively high (819 M), and it was only weakly inhibited by 1 mM ouabain and 1 mM pCS. The structural specificity also differed from that of the uptake observed in the primary cultures. Significantly, none of the nontransformed continuous cell lines of either tumoral (glioma, C6; neuroblastoma, Ml; MINN) or normal (NN; I6) origin actively accumulated [3H]GABA. It is suggested that for the neurochemical studies related to GABA and requiring homogeneous cell populations, the primary cultures offer a better experimental model than the continuous cell lines.  相似文献   
6.
Brain infections as well as peripheral challenges to the immune system lead to an increased production of interleukin-1beta (IL-1beta), a cytokine involved in leukocyte-mediated breakdown of the blood-brain barrier. The effects of IL-1beta have been reported to depend on whether the route of administration is systemic or intracerebral. Using 50-day-old male rats, we compared the effects of IL-1beta on brain gamma-glutamyl transpeptidase (GGT; an enzymatic marker of brain capillary endothelium) at 2, 24 and 96 h after either an intravenous (i.v.) injection of 5 microg IL-1beta or an intracerebroventricular (i.c.v. - lateral ventricle) infusion of 50 ng IL-1beta. When the i.v. route was used, the GGT activity underwent small but significant changes; decreasing in the hippocampus 2 h after the i.v. injection, increasing 24 h later and returning to control levels at 96 h. No significant changes in the hippocampal GGT activity were observed at 2 and 24 h following the i.c.v. infusion. The GGT activity in the hypothalamus remained unchanged regardless of the route of IL-1beta administrations. Similar changes in GGT activity were revealed histochemically. The labeling was found mainly in the capillary bed, the changes being most evident in the hippocampal stratum radiatum and stratum lacunosum-moleculare. A transient increase in GGT activity at 24 h, together with a less sharp delineation of GGT-stained vessels, may reflect IL-1beta induced increased turnover of glutathione and/or oxidative stress, that may in turn, be related to altered permeability of the blood-brain barrier in some neurological and mental disorders, including schizophrenia.  相似文献   
7.
N-acetyl-L-aspartyl-L-glutamate (NAAG) is a dipeptide that could be considered a sequestered form of L-glutamate. As much as 25% of L-glutamate in brain may be present in the form of NAAG. NAAG is also one of the most abundant neuroactive small molecules in the CNS: it is an agonist at Group II metabotropic glutamate receptors (mGluR II) and, at higher concentrations, at the N-methyl-D-aspartate (NMDA) type of ionotropic glutamate receptors. As such, NAAG can be either neuroprotective or neurotoxic and, in fact, both characteristics have been discussed and described in the literature. In the present studies, 250 nmol NAAG was infused into each lateral cerebral ventricle of 12-day-old rat pups and, using Nissl-stained sections, neurodegeneration in the hippocampus was evaluated 24 or 96 h after the infusion. In several experiments, the neuronal death was also visualised by Fluoro-Jade B staining and studied by TUNEL technique. Some of the NAAG-treated animals were allowed to survive until 50 days post partum and subjected to behavioural (open field) tests. The administration of NAAG to 12-day-old rats resulted in extensive death of neurons particularly in the dentate gyrus of the hippocampus. The neurodegeneration was, in part, prevented by administration of an NMDA receptor antagonist MK-801 (0.1 mg/kg). The nuclear DNA-fragmentation demonstrated by TUNEL technique pointed to the presence of non-specific single-strand DNA cleavage. The NAAG-associated neonatal neuronal damage may have perturbed development of synaptic circuitry during adolescence as indicated by an altered performance of the experimental animals in the open field testing (changes in grooming activity) at postnatal day 50. The results underscore the potential neurotoxicity of NAAG in neonatal rat brain and implicate neonatally induced, NMDA receptor-mediated neuronal loss in the development of abnormal behaviour in young adult rats.  相似文献   
8.
Abstract— The high affinity uptake system for l -glutamate and l -aspartate in rat cerebral cortex may not be specific for these likely excitatory synaptic transmitters, as threo-3-hydroxy- dl -aspartate, l -cysteinesulphinate, l -cysteate and d -aspartate strongly inhibit the observed high affinity uptake of l -[3H]glutamate by rat brain slices in a manner consistent with linear competitive inhibition. These substances should therefore be considered as possible substrates for the transport system. Each of these four acidic amino acids excites central neurones in a manner similar to excitation induced by l -glutamate, and as each might occur in brain tissue, their possible synaptic role should be investigated.
l -Glutamate high affinity uptake was shown to be sodium-dependent, but under certain conditions appeared to be less sensitive than GABA uptake to changes in the external sodium ion concentration, and to drugs which modify sodium ion movements. This may be relevant to the efficiency of the glutamate uptake process during synaptic depolarization induced by glutamate.
l -Glutamate high affinity uptake was inhibited in a relatively nonspecific manner by a variety of drugs including mercurials and some electron transport inhibitors.  相似文献   
9.
Abstract— The uptake of l -aspartate, l -glutamate and glycine each appeared to be mediated by two kinetically distinct systems with apparent Km's of the order of 10 ('high affinity') and 100 μM ('low affinity') in slices of cat spinal cord, whereas the uptake of GABA appeared to be mediated by a single system of high affinity. The high affinity uptake of these amino acids in slices of spinal grey matter was approximately 5 times faster than that in slices of spinal white matter. The high affinity uptake systems in the cord slices survived homogenisation of the tissue under conditions known to preserve nerve terminals. Subcellular fractionation studies indicated that osmotically-sensitive particles of equilibrium density equivalent to that of 1.0 m -sucrose were at least in part responsible for the uptake of these amino acids. Inhibition studies indicated that three structurally specific systems of high affinity transported these amino acids:
  • 1 specific for glycine—not inhibited by GABA or any of the other depressant amino acids found in cat spinal cord;
  • 2 specific for GABA—not inhibited by glycine, taurine, l -aspartate or l -glutamate and (3) specific for l -aspartate and l -glutamate—not inhibited by glycine or GABA but strongly inhibited by various acidic amino acids such as l -cysteate and l -cysteine sulphinate.
The high affinity uptake of these amino acids was not inhibited by any of the known antagonists of the postsynaptic actions of these amino acids—strychnine (glycine), bicuculline and benzyl penicillin (GABA), methioninesulphoximine and l -glutamate diethyl ester (l -aspartate and l -glutamate). p-Chloromercuriphenylsulphonate strongly inhibited the high affinity uptake of glycine and GABA but was much less effective as an inhibitor of l -aspartate/l -glutamate high affinity uptake. This is in good agreement with microelectrophoretic studies in which this mercurial was found to potentiate depression of neuronal firing induced by glycine and GABA much more readily than excitation induced by l -aspartate or l -glutamate. These findings suggest the importance of high affinity transport processes in the removal of amino acids from the synaptic environment.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号