首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   3篇
  2021年   1篇
  2020年   2篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2003年   1篇
  2001年   3篇
  1999年   2篇
排序方式: 共有23条查询结果,搜索用时 484 毫秒
1.
The clinical use of the antineoplastic drug cisplatin is limited by its deleterious nephrotoxic side effect. Cisplatin-induced nephrotoxicity is associated with an increase in oxidative stress, leading ultimately to renal cell death and irreversible kidney dysfunction. Oxidative stress could be modified by the cystic fibrosis transmembrane conductance regulator protein (CFTR), a Cl channel not only involved in chloride secretion but as well in glutathione (GSH) transport. Thus, we tested whether the inhibition of CFTR could protect against cisplatin-induced nephrotoxicity. Using a renal proximal cell line, we show that the specific inhibitor of CFTR, CFTRinh-172, prevents cisplatin-induced cell death and apoptosis by modulating the intracellular reactive oxygen species balance and the intracellular GSH concentration. This CFTRinh-172-mediated protective effect occurs without affecting cellular cisplatin uptake or the formation of platinum-DNA adducts. The protective effect of CFTRinh-172 in cisplatin-induced nephrotoxicity was also investigated in a rat model. Five days after receiving a single cisplatin injection (5 mg/kg), rats exhibited renal failure, as evidenced by the alteration of biochemical and functional parameters. Pretreatment of rats with CFTRinh-172 (1 mg/kg) prior to cisplatin injection significantly prevented these deleterious cisplatin-induced nephrotoxic effects. Finally, we demonstrate that CFTRinh-172 does not impair cisplatin-induced cell death in the cisplatin-sensitive A549 cancer cell line. In conclusion, the use of a specific inhibitor of CFTR may represent a novel therapeutic approach in the prevention of nephrotoxic side effects during cisplatin treatment without affecting its antitumor efficacy.  相似文献   
2.
Macroautophagy (hereafter referred to as autophagy) is the major degradative pathway of long-lived proteins and organelles that fulfils key functions in cell survival, tissue remodeling and tumor suppression. Consistently, alterations in autophagy have been involved in a growing list of pathologies including toxic injury, infections, neurodegeneration, myopathies and cancers. Although critical, the molecular mechanisms that control autophagy remain largely unknown. We have recently exploited the disruption of autophagy by environmental carcinogens as a powerful model to uncover the underlying signaling pathways. Our work published in Cancer Research revealed that the sustained activation of the MAPK ERK pathway by the carcinogen Lindane or the MEK1(+) oncogene alters autophagy selectively at the maturation step resulting in the accumulation of large defective autolysosomes. Consistent with our findings, a similar defect is observed with other common xenobiotics such as dichlorodiphenyltrichloroethane and biphenol A that specifically activate ERK. Conversely, Pentachlorophenol that activates both ERK and p38, fails to induce autophagic vacuolation. In addition, evidence is provided that abrogation of p38 by SB203580 is sufficient to interfere with the normal autophagic maturation step. Altogether, these findings underscore the critical role played by MAPK ERK and p38 in the tight control of the autophagy process at the maturation step.  相似文献   
3.
Glial cell line-derived neurotrophic factor (GDNF) plays a crucial role in rescuing neural crest cells from apoptosis during their migration in the foregut. This survival factor binds to the heterodimer GDNF family receptor alpha1/Ret, inducing the Ret tyrosine kinase activity. ret loss-of-function mutations result in Hirschsprung's disease, a frequent developmental defect of the enteric nervous system. Although critical to enteric nervous system development, the intracellular signaling cascades activated by GDNF and their importance in neuroectodermic cell survival still remain elusive. Using the neuroectodermic SK-N-MC cell line, we found that the Ret tyrosine kinase activity is essential for GDNF to induce phosphatidylinositol 3-kinase (PI3K)/Akt and ERK pathways as well as cell rescue. We demonstrate that activation of PI3K is mandatory for GDNF-induced cell survival. In addition, evidence is provided for a critical up-regulation of the ERK pathway by PI3K at the level of Raf-1. Conversely, Akt inhibits the ERK pathway. Thus, both PI3K and Akt act in concert to finely regulate the level of ERK. We found that Akt activation is indispensable for counteracting the apoptotic signal on mitochondria, whereas ERK is partially involved in precluding procaspase-3 cleavage. Altogether, these findings underscore the importance of the Ret/PI3K/Akt pathway in GDNF-induced neuroectodermic cell survival.  相似文献   
4.
The aim of this study was to characterize the role of CFTR during Cd2+-induced apoptosis. For this purpose primary cultures and cell lines originated from proximal tubules (PCT) of wild-type cftr+/+ and cftr?/? mice were used. In cftr+/+ cells, the application of Cd2+ (5 μM) stimulated within 8 min an ERK1/2-activated CFTR-like Cl? conductance sensitive to CFTRinh-172. Thereafter Cd2+ induced an apoptotic volume decrease (AVD) within 6 h followed by caspase-3 activation and apoptosis. The early increase in CFTR conductance was followed by the activation of volume-sensitive outwardly rectifying (VSOR) Cl? and TASK2 K+ conductances. By contrast, cftr?/? cells exposed to Cd2+ were unable to develop VSOR currents, caspase-3 activity, and AVD process and underwent necrosis. Moreover in cftr+/+ cells, Cd2+ enhanced reactive oxygen species (ROS) production and induced a 50% decrease in total glutathione content (major ROS scavenger in PCT). ROS generation and glutathione decrease depended on the presence of CFTR, since they did not occur in the presence of CFTRinh-172 or in cftr?/? cells. Additionally, Cd2+ exposure accelerates effluxes of fluorescent glutathione S-conjugate in cftr+/+ cells. Our data suggest that CFTR could modulate ROS levels to ensure apoptosis during Cd2+ exposure by modulating the intracellular content of glutathione.  相似文献   
5.
6.
An exponential linear destruction was observed for Escherichia coli O157:H7 and Salmonella typhimurium in cattle manure and manure slurry stored at 4, 20 or 37 degrees C. The resulting decimal reduction times ranged from 6 days to 3 weeks in manure and from 2 days to 5 weeks in manure slurry. The main effects of time as well as temperature were pronounced with the most rapid destruction at 37 degrees C. The ammonia concentration in manure increased slightly during storage but did not exceed 0.1%. pH values in the deeper layers of manure remained constant except at 37 degrees C when the pH increased by 1 unit in 60 days. In the surface layers of manure, pH increased by 1.5-2 units, the oxidation-reduction potential of the manure declined rapidly to values below -200 mV. These changes do not seem to be reflected in changing rates of bacterial destruction. The observed order of destruction makes it possible to predict storage conditions (temperature and time) that will lead to a predetermined level of reduction of the two pathogens.  相似文献   
7.
Woody biomass dynamics are an expression of ecosystem function, yet biomass estimates do not provide information on the spatial distribution of woody vegetation within the vertical vegetation subcanopy. We demonstrate the ability of airborne light detection and ranging (LiDAR) to measure aboveground biomass and subcanopy structure, as an explanatory tool to unravel vegetation dynamics in structurally heterogeneous landscapes. We sampled three communal rangelands in Bushbuckridge, South Africa, utilised by rural communities for fuelwood harvesting. Woody biomass estimates ranged between 9 Mg ha-1 on gabbro geology sites to 27 Mg ha-1 on granitic geology sites. Despite predictions of woodland depletion due to unsustainable fuelwood extraction in previous studies, biomass in all the communal rangelands increased between 2008 and 2012. Annual biomass productivity estimates (10–14% p.a.) were higher than previous estimates of 4% and likely a significant contributor to the previous underestimations of modelled biomass supply. We show that biomass increases are attributable to growth of vegetation <5 m in height, and that, in the high wood extraction rangeland, 79% of the changes in the vertical vegetation subcanopy are gains in the 1-3m height class. The higher the wood extraction pressure on the rangelands, the greater the biomass increases in the low height classes within the subcanopy, likely a strong resprouting response to intensive harvesting. Yet, fuelwood shortages are still occurring, as evidenced by the losses in the tall tree height class in the high extraction rangeland. Loss of large trees and gain in subcanopy shrubs could result in a structurally simple landscape with reduced functional capacity. This research demonstrates that intensive harvesting can, paradoxically, increase biomass and this has implications for the sustainability of ecosystem service provision. The structural implications of biomass increases in communal rangelands could be misinterpreted as woodland recovery in the absence of three-dimensional, subcanopy information.  相似文献   
8.
Invading bacteria are recognized, captured and killed by a specialized form of autophagy, called xenophagy. Recently, defects in xenophagy in Crohn’s disease (CD) have been implicated in the pathogenesis of human chronic inflammatory diseases of uncertain etiology of the gastrointestinal tract. We show here that pathogenic adherent-invasive Escherichia coli (AIEC) isolated from CD patients are able to adhere and invade neutrophils, which represent the first line of defense against bacteria. Of particular interest, AIEC infection of neutrophil-like PLB-985 cells blocked autophagy at the autolysosomal step, which allowed intracellular survival of bacteria and exacerbated interleukin-8 (IL-8) production. Interestingly, this block in autophagy correlated with the induction of autophagic cell death. Likewise, stimulation of autophagy by nutrient starvation or rapamycin treatment reduced intracellular AIEC survival and IL-8 production. Finally, treatment with an inhibitor of autophagy decreased cell death of AIEC-infected neutrophil-like PLB-985 cells. In conclusion, excessive autophagy in AIEC infection triggered cell death of neutrophils.  相似文献   
9.
Most cells can communicate directly via gap junction channels. Gap junction intercellular communication (GJIC) participates in the control of cell proliferation. Abnormal expression of connexins (Cx), the constitutive proteins of gap junctions, has been associated with a transformed phenotype. In the seminiferous tubules, connexin Cx43 is predominantly expressed by Sertoli cell and germinal cell membranes. We studied Cx43 expression in four testicular cancers (pure seminoma). Cx43 mRNA and protein characterized by RT PCR and Western blot were found to be similar to controls (normal testes) in each case. However, immunofluorscence study of Cx43 protein indicated a cytoplasmic localization with no membrane expression, excluding the participation of Cx43 in GJIC. The significance of this aberrant localization will be discussed in relation to carcinogenesis.  相似文献   
10.
Humans have played a major role in altering savanna structure and function, and growing land‐use pressure will only increase their influence on woody cover. Yet humans are often overlooked as ecological components. Both humans and the African elephant Loxodonta africana alter woody vegetation in savannas through removal of large trees and activities that may increase shrub cover. Interactive effects of both humans and elephants with fire may also alter vegetation structure and composition. Here we capitalize on a macroscale experimental opportunity – brought about by the juxtaposition of an elephant‐mediated landscape, human‐utilized communal harvesting lands and a nature reserve fenced off from both humans and elephants – to investigate the influence of humans and elephants on height‐specific treefall dynamics. We surveyed 6812 ha using repeat, airborne high resolution Light Detection and Ranging (LiDAR) to track the fate of 453 685 tree canopies over two years. Human‐mediated biennial treefall rates were 2–3.5 fold higher than the background treefall rate of 1.5% treefall ha–1, while elephant‐mediated treefall rates were 5 times higher at 7.6% treefall ha–1 than the control site. Model predictors of treefall revealed that human or elephant presence was the most important variable, followed by the interaction between geology and fire frequency. Treefall patterns were spatially heterogeneous with elephant‐driven treefall associated with geology and surface water, while human patterns were related to perceived ease of access to wood harvesting areas and settlement expansion. Our results show humans and elephants utilize all height classes of woody vegetation, and that large tree shortages in a heavily utilized communal land has transferred treefall occurrence to shorter vegetation. Elephant‐ and human‐dominated landscapes are tied to interactive effects that may hinder tree seedling survival which, combined with tree loss in the landscape, may compromise woodland sustainability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号