首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Invading bacteria are recognized, captured and killed by a specialized form of autophagy, called xenophagy. Recently, defects in xenophagy in Crohn’s disease (CD) have been implicated in the pathogenesis of human chronic inflammatory diseases of uncertain etiology of the gastrointestinal tract. We show here that pathogenic adherent-invasive Escherichia coli (AIEC) isolated from CD patients are able to adhere and invade neutrophils, which represent the first line of defense against bacteria. Of particular interest, AIEC infection of neutrophil-like PLB-985 cells blocked autophagy at the autolysosomal step, which allowed intracellular survival of bacteria and exacerbated interleukin-8 (IL-8) production. Interestingly, this block in autophagy correlated with the induction of autophagic cell death. Likewise, stimulation of autophagy by nutrient starvation or rapamycin treatment reduced intracellular AIEC survival and IL-8 production. Finally, treatment with an inhibitor of autophagy decreased cell death of AIEC-infected neutrophil-like PLB-985 cells. In conclusion, excessive autophagy in AIEC infection triggered cell death of neutrophils.  相似文献   

3.
Ileal lesions in Crohn's disease (CD) patients are abnormally colonized by pathogenic adherent-invasive Escherichia coli (AIEC). AIEC bacteria are able to replicate within epithelial cells after lysis of the endocytic vacuole and within macrophages in a large vacuole. CD-associated polymorphisms in NOD2, ATG16L1 and IRGM affect bacterial autophagy, a crucial innate immunity mechanism. We previously determined that defects in autophagy impaired the ability of epithelial cells to control AIEC replication. AIEC behave differently within epithelial cells and macrophages and so we investigated the impact of defects in autophagy on AIEC intramacrophagic replication and pro-inflammatory cytokine response. AIEC bacteria induced the recruitment of the autophagy machinery at the site of phagocytosis, and functional autophagy limited AIEC intramacrophagic replication. Impaired ATG16L1, IRGM or NOD2 expression induced increased intramacrophagic AIEC and increased secretion of IL-6 and TNF-α in response to AIEC infection. In contrast, forced induction of autophagy decreased the numbers of intramacrophagic AIEC and pro-inflammatory cytokine release, even in a NOD2-deficient context. On the basis of our findings, we speculate that stimulating autophagy in CD patients would be a powerful therapeutic strategy to concomitantly restrain intracellular AIEC replication and slow down the inflammatory response.  相似文献   

4.
5.
《Autophagy》2013,9(8):1197-1214
Autophagy is activated in response to a variety of cellular stresses including metabolic stress. While elegant genetic studies in yeast have identified the core autophagy machinery, the signaling pathways that regulate this process are less understood. AMPK is an energy sensing kinase and several studies have suggested that AMPK is required for autophagy. The biochemical connections between AMPK and autophagy, however, have not been elucidated. In this report, we identify a biochemical connection between a critical regulator of autophagy, ULK1, and the energy sensing kinase, AMPK. ULK1 forms a complex with AMPK, and AMPK activation results in ULK1 phosphorylation. Moreover, we demonstrate that the immediate effect of AMPK-dependent phosphorylation of ULK1 results in enhanced binding of the adaptor protein YWHAZ/14-3-3ζ; and this binding alters ULK1 phosphorylation in vitro. Finally, we provide evidence that both AMPK and ULK1 regulate localization of a critical component of the phagophore, ATG9, and that some of the AMPK phosphorylation sites on ULK1 are important for regulating ATG9 localization. Taken together these data identify an ULK1-AMPK signaling cassette involved in regulation of the autophagy machinery.  相似文献   

6.
《Autophagy》2013,9(7):737-747
Protein synthesis and autophagy work as two opposing processes to control cell growth in response to nutrient supply. The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway, which acts as a master regulator to control protein synthesis, has recently been shown to inhibit autophagy by phosphorylating and inactivating ULK1, an autophagy regulatory protein. ULK1 also inhibits phosphorylation of a mTORC1 substrate, S6K1, indicating that a complex signaling interplay exists between mTORC1 and ULK1. Here, we demonstrate that ULK1 induces multisite phosphorylation of Raptor in vivo and in vitro. Using phospho-specific antibodies we identify Ser855 and Ser859 as being strongly phosphorylated by ULK1, with moderate phosphorylation of Ser792 also observed. Interestingly, ULK1 overexpression also increases phosphorylation of Raptor Ser863 and the mTOR autophosphorylation site, Ser2481 in a mTORC1-dependent manner. Despite this evidence for heightened mTORC1 kinase activity following ULK1 overexpresssion, mTORC1-mediated phosphorylation of S6K1 and 4E-BP1 is significantly inhibited. ULK1 expression has no effect on protein-protein interactions between the components of mTORC1, but does reduce the ability of Raptor to bind to the substrate 4E-BP1. Furthermore, shRNA knockdown of ULK1 leads to increased phosphorylation of mTORC1 substrates and decreased phosphorylation of Raptor at Ser859 and Ser792. We propose a new mechanism whereby ULK1 contributes to mTORC1 inhibition through hindrance of substrate docking to Raptor. This is a novel negative feedback loop that occurs upon activation of autophagy to maintain mTORC1 inhibition when nutrient supplies are limiting.  相似文献   

7.
Protein synthesis and autophagy work as two opposing processes to control cell growth in response to nutrient supply. The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway, which acts as a master regulator to control protein synthesis, has recently been shown to inhibit autophagy by phosphorylating and inactivating ULK1, an autophagy regulatory protein. ULK1 also inhibits phosphorylation of a mTORC1 substrate, S6K1, indicating that a complex signaling interplay exists between mTORC1 and ULK1. Here, we demonstrate that ULK1 induces multisite phosphorylation of Raptor in vivo and in vitro. Using phospho-specific antibodies we identify Ser855 and Ser859 as being strongly phosphorylated by ULK1, with moderate phosphorylation of Ser792 also observed. Interestingly, ULK1 overexpression also increases phosphorylation of Raptor Ser863 and the mTOR autophosphorylation site, Ser2481 in a mTORC1-dependent manner. Despite this evidence for heightened mTORC1 kinase activity following ULK1 overexpresssion, mTORC1-mediated phosphorylation of S6K1 and 4E-BP1 is significantly inhibited. ULK1 expression has no effect on protein-protein interactions between the components of mTORC1, but does reduce the ability of Raptor to bind to the substrate 4E-BP1. Furthermore, shRNA knockdown of ULK1 leads to increased phosphorylation of mTORC1 substrates and decreased phosphorylation of Raptor at Ser859 and Ser792. We propose a new mechanism whereby ULK1 contributes to mTORC1 inhibition through hindrance of substrate docking to Raptor. This is a novel negative feedback loop that occurs upon activation of autophagy to maintain mTORC1 inhibition when nutrient supplies are limiting.  相似文献   

8.
B cell activating factor from the TNF family (BAFF) is implicated in not only the physiology of normal B cells, but also the pathophysiology of aggressive B cells related to malignant and autoimmune diseases. Autophagy plays a crucial role in balancing the beneficial and detrimental effects of immunity and inflammation. However, little is known about whether and how excessive BAFF mediates autophagy contributing to B-cell proliferation and survival. Here, we show that excessive human soluble BAFF (hsBAFF) inhibited autophagy with a concomitant reduction of LC3-II in normal and B-lymphoid (Raji) cells. Knockdown of LC3 not only potentiated hsBAFF inhibition of autophagy, but also attenuated hsBAFF activation of Akt/mTOR pathway, thereby diminishing hsBAFF-induced B-cell proliferation/viability. Further, we found that hsBAFF inhibition of autophagy was Akt/mTOR-dependent. This is supported by the findings that hsBAFF increased mTORC1-mediated phosphorylation of ULK1 (Ser757); Akt inhibitor X, mTORC1 inhibitor rapamycin, mTORC1/2 inhibitor PP242, expression of dominant negative Akt, or knockdown of mTOR attenuated hsBAFF-induced phosphorylation of ULK1, decrease of LC3-II level, and increase of cell proliferation/viability. Chelating intracellular free Ca2+ ([Ca2+]i) with BAPTA/AM or preventing [Ca2+]i elevation using EGTA or 2-APB profoundly blocked hsBAFF-induced activation of Akt/mTOR, phosphorylation of ULK1 and decrease of LC3-II, as well as increase of cell proliferation/viability. Similar effects were observed in the cells where CaMKII was inhibited by KN93 or knocked down by CaMKII shRNA. Collectively, these results indicate that hsBAFF inhibits autophagy promoting cell proliferation and survival through activating Ca2+-CaMKII-dependent Akt/mTOR signaling pathway in normal and neoplastic B-lymphoid cells. Our findings suggest that manipulation of intracellular Ca2+ level or CaMKII, Akt, or mTOR activity to promote autophagy may be exploited for prevention of excessive BAFF-induced aggressive B lymphocyte disorders and autoimmune diseases.  相似文献   

9.
Ileal lesions in Crohn's disease (CD) patients are colonized by pathogenic adherent-invasive Escherichia coli (AIEC) able to invade and to replicate within intestinal epithelial cells. Recent genome-wide association studies have highlighted the autophagy pathway as being associated with CD risk. In the present study we investigated whether defects in autophagy enhance replication of commensal and pathogenic Escherichia coli and CD-associated AIEC. We show that functional autophagy limits intracellular AIEC replication and that a subpopulation of the intracellular bacteria is located within LC3-positive autophagosomes. In IRGM and ATG16L1 deficient cells intracellular AIEC LF82 bacteria have enhanced replication. Surprisingly autophagy deficiency did not interfere with the ability of intracellular bacteria to survive and/or replicate for any other E. coli strains tested, including non-pathogenic, environmental, commensal, or pathogenic strains involved in gastro enteritis. Together these findings demonstrate a central role for autophagy restraining Adherent-Invasive E. coli strains associated with ileal CD. AIEC infection in patients with polymorphisms in autophagy genes may have a significant impact on the outcome of intestinal inflammation.  相似文献   

10.
Wenxian Wu 《Autophagy》2020,16(8):1544-1546
ABSTRACT

The mammalian ULK1 is the central initiating kinase of bulk and selective macroautophagy/autophagy processes. In the past, both autophagy-relevant and non-autophagy-relevant substrates of this Ser/Thr kinase have been reported. Here, we describe our recent finding that ULK1 also regulates TNF signaling pathways. We find that inhibition of autophagy or specifically ULK1 increases TNF-induced cell death. This autophagy-independent pro-survival function of ULK1 is mediated via the phosphorylation of RIPK1 at Ser357. RIPK1 is the central mediator of pro-inflammatory or pro-death signaling pathways induced by TNF, and ULK1-dependent phosphorylation regulates RIPK1 activation and distribution to different intracellular signaling complexes. Our results indicate that ULK1 exerts a cyto-protective function not only by initiating autophagy, but also by controlling RIPK1-mediated cell death.  相似文献   

11.
It has been long recognised that activation of toll‐like receptors (TLRs) induces autophagy to restrict intracellular bacterial growth. However, the mechanisms of TLR‐induced autophagy are incompletely understood. Salmonella Typhimurium is an intracellular pathogen that causes food poisoning and gastroenteritis in humans. Whether TLR activation contributes to S. Typhimurium‐induced autophagy has not been investigated. Here, we report that S. Typhimurium and TLRs shared a common pathway to induce autophagy in macrophages. We first showed that S. Typhimurium‐induced autophagy in a RAW264.7 murine macrophage cell line was mediated by the AMP‐activated protein kinase (AMPK) through activation of the TGF‐β‐activated kinase (TAK1), a kinase activated by multiple TLRs. AMPK activation led to increased phosphorylation of Unc‐51‐like autophagy activating kinase (ULK1) at S317 and S555. ULK1 phosphorylation at these two sites in S. Typhimurium‐infected macrophages overrode the inhibitory effect of mTOR on ULK1 activity due to mTOR‐mediated ULK1 phosphorylation at S757. Lipopolysaccharide (LPS), flagellin, and CpG oligodeoxynucleotide, which activate TLR4, TLR5, and TLR9, respectively, increased TAK1 and AMPK phosphorylation and induced autophagy in RAW264.7 cells and in bone marrow‐derived macrophages. However, LPS was unable to induce TAK1 and AMPK phosphorylation and autophagy in TLR4‐deficient macrophages. TAK1 and AMPK‐specific inhibitors blocked S. Typhimurium‐induced autophagy and xenophagy and increased the bacterial growth in RAW264.7 cells. These observations collectively suggest that activation of the TAK1–AMPK axis through TLRs is essential for S. Typhimurium‐induced autophagy and that TLR signalling cross‐activates the autophagic pathway to clear intracellular bacteria.  相似文献   

12.
14-3-3ζ promotes cell survival via dynamic interactions with a vast network of binding partners, many of which are involved in stress regulation. We show here that hypoxia (low glucose and oxygen) triggers a rearrangement of the 14-3-3ζ interactome to favor an interaction with the core autophagy regulator Atg9A. Our data suggest that the localization of mammalian Atg9A to autophagosomes requires phosphorylation on the C terminus of Atg9A at S761, which creates a 14-3-3ζ docking site. Under basal conditions, this phosphorylation is maintained at a low level and is dependent on both ULK1 and AMPK. However, upon induction of hypoxic stress, activated AMPK bypasses the requirement for ULK1 and mediates S761 phosphorylation directly, resulting in an increase in 14-3-3ζ interactions, recruitment of Atg9A to LC3-positive autophagosomes, and enhanced autophagosome production. These data suggest a novel mechanism whereby the level of autophagy induction can be modulated by AMPK/ULK1-mediated phosphorylation of mammalian Atg9A.  相似文献   

13.
14.
ULK1 (unc-51 like autophagy activating kinase 1), the key mediator of MTORC1 signaling to autophagy, regulates early stages of autophagosome formation in response to starvation or MTORC1 inhibition. How ULK1 regulates the autophagy induction process remains elusive. Here, we identify that ATG13, a binding partner of ULK1, mediates interaction of ULK1 with the ATG14-containing PIK3C3/VPS34 complex, the key machinery for initiation of autophagosome formation. The interaction enables ULK1 to phosphorylate ATG14 in a manner dependent upon autophagy inducing conditions, such as nutrient starvation or MTORC1 inhibition. The ATG14 phosphorylation mimics nutrient deprivation through stimulating the kinase activity of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex and facilitates phagophore and autophagosome formation. By monitoring the ATG14 phosphorylation, we determined that the ULK1 activity requires BECN1/Beclin 1 but not the phosphatidylethanolamine (PE)-conjugation machinery and the PIK3C3 kinase activity. Monitoring the phosphorylation also allowed us to identify that ATG9A is required to suppress the ULK1 activity under nutrient-enriched conditions. Furthermore, we determined that ATG14 phosphorylation depends on ULK1 and dietary conditions in vivo. These results define a key molecular event for the starvation-induced activation of the ATG14-containing PtdIns3K complex by ULK1, and demonstrate hierarchical relations between the ULK1 activation and other autophagy proteins involved in phagophore formation.  相似文献   

15.
Cucurbitacins, the natural triterpenoids possessing many biological activities, have been reported to suppress the mTORC1/p70S6K pathway and to induce autophagy. However, the correlation between such activities is largely unknown. In this study, we addressed this issue in human cancer cells in response to cucurbitacin E (CuE) treatment. Our results showed that CuE induced autophagy as evidenced by the formation of LC3-II and colocalization of punctate LC3 with the lysosomal marker LAMP2 in HeLa and MCF7 cells. However, CuE induced much lower levels of autophagy in ATG5-knocked down cells and failed to induce autophagy in DU145 cells lacking functional ATG5 expression, suggesting the dependence of CuE-induced autophagy on ATG5. Consistent with autophagy induction, mTORC1 activity (as reflected by p70S6K and ULK1S758 phosphorylation) was inhibited by CuE treatment. The suppression of mTORC1 activity was further confirmed by reduced recruitment of mTOR to the lysosome, which is the activation site of mTORC1. In contrast, CuE rapidly activated AMPK leading to increased phosphorylation of its substrates. AMPK activation contributed to CuE-induced suppression of mTORC1/p70S6K signaling and autophagy induction, since AMPK knockdown diminished these effects. Collectively, our data suggested that CuE induced autophagy in human cancer cells at least partly via downregulation of mTORC1 signaling and upregulation of AMPK activity.  相似文献   

16.

Background

The carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) acts as a receptor for adherent-invasive E. coli (AIEC) and its ileal expression is increased in patients with Crohn''s disease (CD). Given its contribution to the pathogenesis of CD, we aimed to investigate the role of genetic variants in the CEACAM6 region in patients with inflammatory bowel diseases (IBD).

Methodology

In this study, a total of 2,683 genomic DNA samples (including DNA from 858 CD patients, 475 patients with ulcerative colitis (UC), and 1,350 healthy, unrelated controls) was analyzed for eight CEACAM6 SNPs (rs10415946, rs1805223 = p.Pro42Pro, rs4803507, rs4803508, rs11548735 = p.Gly239Val, rs7246116 = pHis260His, rs2701, rs10416839). In addition, a detailed haplotype analysis and genotype-phenotype analysis were performed. Overall, our genotype analysis did not reveal any significant association of the investigated CEACAM6 SNPs and haplotypes with CD or UC susceptibility, although certain CEACAM6 SNPs modulated CEACAM6 expression in intestinal epithelial cell lines. Despite its function as receptor of AIEC in ileal CD, we found no association of the CEACAM6 SNPs with ileal or ileocolonic CD. Moreover, there was no evidence of epistasis between the analyzed CEACAM6 variants and the main CD-associated NOD2, IL23R and ATG16L1 variants.

Conclusions

This study represents the first detailed analysis of CEACAM6 variants in IBD patients. Despite its important role in bacterial attachment in ileal CD, we could not demonstrate a role for CEACAM6 variants in IBD susceptibility or regarding an ileal CD phenotype. Further functional studies are required to analyze if these gene variants modulate ileal bacterial attachment.  相似文献   

17.
Toll-like receptors (TLRs) serve as the major innate immune sensors for detection of specific molecular patterns on various pathogens. TLRs activate signaling events mainly by utilizing ubiquitin-dependent mechanisms. Recent research advances have provided evidence that TLR signaling is linked to induction of autophagy. Autophagy is currently known to affect both of the immune defense and suppression of inflammatory responses. In TLR-associated immune responses, autophagic lysis of intracellular microbes (called xenophagy) contributes to the former mechanism, while the latter seems to be mediated by the control of the mitochondrial integrity or selective autophagic clearance of aggregated signaling proteins (called aggrephagy). Several autophagy-related ubiquitin-binding proteins, such as SQSTM1/p62 and NDP52, mediate xenophagy and aggrephagy. In this review, we summarize the expanded knowledge regarding TLR signaling and autophagy signaling. After that, we will focus on autophagy-associated signaling downstream of TLRs and the effect of autophagy on TLR signaling, thus highlighting the signaling crosstalk between the TLR-associated innate immune responses and the regulation of innate immunity by xenophagy and aggrephagy.  相似文献   

18.
Dysregulation of the balance between cell proliferation and cell death is a central feature of malignances. Death-associated protein kinase 3 (DAPK3) regulates programmed cell death including apoptosis and autophagy. Our previous study showed that DAPK3 downregulation was detected in more than half of gastric cancers (GCs), which was related to tumor invasion, metastasis, and poor prognosis. However, the precise molecular mechanism underlying DAPK3-mediated tumor suppression remains unclear. Here, we showed that the tumor suppressive function of DAPK3 was dependent on autophagy process. Mass spectrometry, in vitro kinase assay, and immunoprecipitation revealed that DAPK3 increased ULK1 activity by direct ULK1 phosphorylation at Ser556. ULK1 phosphorylation by DAPK3 facilitates the ULK1 complex formation, the VPS34 complex activation, and autophagy induction upon starvation. The kinase activity of DAPK3 and ULK1 Ser556 phosphorylation were required for DAPK3-modulated tumor suppression. The coordinate expression of DAPK3 with ULK1 Ser556 phosphorylation was confirmed in clinical GC samples, and this co-expression was correlated with favorable survival outcomes in patients. Collectively, these findings indicate that the tumor-suppressor roles of DAPK3 in GC are associated with autophagy and that DAPK3 is a novel autophagy regulator, which can directly phosphorylate ULK1 and activate ULK1. Thus, DAPK3 might be a promising prognostic autophagy-associated marker.Subject terms: Tumour-suppressor proteins, Macroautophagy  相似文献   

19.
Autophagy, the starvation-induced degradation of bulky cytosolic components, is up-regulated in mammalian cells when nutrient supplies are limited. Although mammalian target of rapamycin (mTOR) is known as the key regulator of autophagy induction, the mechanism by which mTOR regulates autophagy has remained elusive. Here, we identify that mTOR phosphorylates a mammalian homologue of Atg13 and the mammalian Atg1 homologues ULK1 and ULK2. The mammalian Atg13 binds both ULK1 and ULK2 and mediates the interaction of the ULK proteins with FIP200. The binding of Atg13 stabilizes and activates ULK and facilitates the phosphorylation of FIP200 by ULK, whereas knockdown of Atg13 inhibits autophagosome formation. Inhibition of mTOR by rapamycin or leucine deprivation, the conditions that induce autophagy, leads to dephosphorylation of ULK1, ULK2, and Atg13 and activates ULK to phosphorylate FIP200. These findings demonstrate that the ULK-Atg13-FIP200 complexes are direct targets of mTOR and important regulators of autophagy in response to mTOR signaling.  相似文献   

20.
Autophagy eliminates dysfunctional mitochondria in an intricate process known as mitophagy. ULK1 is critical for the induction of autophagy, but its substrate(s) and mechanism of action in mitophagy remain unclear. Here, we show that ULK1 is upregulated and translocates to fragmented mitochondria upon mitophagy induction by either hypoxia or mitochondrial uncouplers. At mitochondria, ULK1 interacts with FUNDC1, phosphorylating it at serine 17, which enhances FUNDC1 binding to LC3. A ULK1‐binding‐deficient mutant of FUNDC1 prevents ULK1 translocation to mitochondria and inhibits mitophagy. Finally, kinase‐active ULK1 and a phospho‐mimicking mutant of FUNDC1 rescue mitophagy in ULK1‐null cells. Thus, we conclude that FUNDC1 regulates ULK1 recruitment to damaged mitochondria, where FUNDC1 phosphorylation by ULK1 is crucial for mitophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号