首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   52篇
  2021年   2篇
  2016年   2篇
  2015年   9篇
  2014年   8篇
  2013年   9篇
  2012年   10篇
  2011年   17篇
  2010年   13篇
  2009年   6篇
  2008年   20篇
  2007年   13篇
  2006年   18篇
  2005年   9篇
  2004年   10篇
  2003年   9篇
  2002年   4篇
  2001年   9篇
  2000年   11篇
  1999年   9篇
  1998年   8篇
  1997年   4篇
  1996年   3篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   7篇
  1991年   2篇
  1990年   7篇
  1989年   8篇
  1988年   2篇
  1987年   2篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   6篇
  1981年   3篇
  1980年   8篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   6篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1967年   1篇
  1964年   1篇
  1957年   1篇
  1944年   1篇
  1913年   1篇
排序方式: 共有301条查询结果,搜索用时 625 毫秒
1.
Cells of the cyanobacterium, Synechococcus PCC7942, grown under high inorganic carbon (Ci) conditions (1% CO2; pH 8) were found to be photosynthetically dependent on exogenous CO2. This was judged by the fact that they had a similar photosynthetic affinity for CO2 (K0.5[CO2] of 3.4-5.4 micromolar) over the pH range 7 to 9 and that the low photosynthetic affinity for Ci measured in dense cell suspensions was improved by the addition of exogenous carbonic anhydrase (CA). The CA inhibitor, ethoxyzolamide (EZ), was shown to reduce photosynthetic affinity for CO2 in high Ci cells. The addition of 200 micromolar EZ to high Ci cells increased K0.5(CO2) from 4.6 micromolar to more than 155 micromolar at pH 8.0, whereas low Ci cells (grown at 30 microliters CO2 per liter of air) were less sensitive to EZ. EZ inhibition in high and low Ci cells was largely relieved by increasing exogenous Ci up to 100 millimolar. Lipid soluble CA inhibitors such as EZ and chlorazolamide were shown to be the most effective inhibitors of CO2 usage, whereas water soluble CA inhibitors such as methazolamide and acetazolamide had little or no effect. EZ was found to cause a small drop in photosystem II activity, but this level of inhibition was not sufficient to explain the large effect that EZ had on CO2 usage. High Ci cells of Anabaena variabilis M3 and Synechocystis PCC6803 were also found to be sensitive to 200 micromolar EZ. We discuss the possibility that the inhibitory effect of EZ on CO2 usage in high Ci cells of Synechococcus PCC7942 may be due to inhibition of a `CA-like' function associated with the CO2 utilizing Ci pump or due to inhibition of an internal CA activity, thus affecting CO2 supply to ribulose bisphosphate carboxylase-oxygenase.  相似文献   
2.
FSH beta, as well as LH beta, and alpha-subunit mRNA levels were examined in the pituitary glands of male rats after sex steroid replacement at various times (7, 28, or 90 days) after orchiectomy. Testosterone propionate, dihydrotestosterone propionate, or 17 beta-estradiol benzoate (E) were administered daily for 7 days before killing, to assess the role of different gonadal steroids on gonadotropin subunit mRNA levels. Subunit mRNAs were determined by blot hybridization using rat FSH beta genomic DNA, and alpha and LH beta cDNAs. At all time points, alpha and LH beta mRNAs increased after gonadectomy and fell toward normal levels with either androgen or estrogen replacement. FSH beta mRNA levels increased variably postcastration: 4-fold at 7 days, 2-fold at 28 days, and 4- to 5-fold at 90 days. Although E replacement uniformly suppressed FSH beta mRNAs, neither testosterone propionate nor dihydrotestosterone propionate administration suppressed FSH beta mRNA levels at any time point after orchiectomy. These data demonstrate that there is a relative lack of negative regulation of FSH beta mRNA levels by androgens in a paradigm in which E administration results in marked negative regulation of FSH beta mRNA levels. Thus, in the male rat, estrogens negatively regulate all three gonadotropin subunit mRNA levels while androgens negative regulate LH beta and alpha-subunit but fail to suppress FSH beta mRNAs.  相似文献   
3.
Mesophyll chloroplasts of three C4 sub types, Panicum miliaceum (NAD-malic enzyme), Panicum maximum (PCK), and Zea mays (NADP-malic enzyme), were prepared from protoplast extracts and used to study the photoreduction of O2. The processes of O2 uptake and evolution in these preparations, which lack ribulose 1,5-bisphosphate carboxylase/oxygenase, were studied simultaneously using stable isotopes of O2 and mass spectrometry. The responses of O2 uptake to O2 tension and addition of various substrates (3-phosphoglycerate, pyruvate, and oxaloacetate) were studied in detail. The addition of photosynthetic substrates differing in ATP to NADPH demands indicated that photoreduction of O2 in these chloroplast preparations is linked to ATP production and strongly regulated by NADP+ levels. The results clearly indicate that photoreduction of O2 could be of physiological relevance in balancing the ATP to NADPH requirements of C4 mesophyll chloroplasts.  相似文献   
4.
5.
The tolerance of Musa balbisiana Colla seeds to gamma irradiation was found to be considerably greater than that of rhizomes of the parthenocarpic variety ‘Gros Michel': e.g., 11.8 krad reduced the germination of rhizomes 92% and of seeds approximately 15%. Intact seeds exposed to doses higher than 48 krad did not germinate in non-sterile soil, but, when scarified and cultured axenically after irradiation, seeds which received doses as high as 70 krad germinated. Embryos excised from seeds exposed to doses as high as 285 krad formed callus, indicating that not all metabolic processes were inhibited by these extremely high doses. There was considerable variation in radiation tolerance between seed lots which was not related to their age, moisture content, or pre-exposure viability. Germination of intact seeds appeared to be stimulated by doses of 3 or 9 krad. No lasting differences attributable to the level of irradiation were apparent in the development of seedlings derived from either intact or scarified seeds nor of plantlets derived from excised embryos. Conversely, there was a significant reduction, proportional to irradiation dose, in the growth of plants developing from rhizomes, emphasizing the greater radiation sensitivity of the vegetative propagule. The radiation tolerance of seed-borne microorganisms was considerably higher than that of the plant materials, indicating that gamma irradiation is not effective as a means of obtaining pathogen-free rhizomes or surface-sterilizing seeds of M. balbisiana.  相似文献   
6.
Carbon oxysulfide (COS) was reinvestigated as an inhibitor of active inorganic carbon transport in cells of Synechococcus PCC7942 adapted to growth at low inorganic carbon. COS inhibited both CO2 and HCO3 transport processes in a reversible (in the short term) and mixed competitive manner. The inhibition of COS was established using both silicone oil centrifugation experiments and O2-evolution studies. The Ki for COS inhibition was 29 micromolar for CO2 transport and 110 micromolar for HCO3 transport. These results support a model of inorganic carbon transport with a central CO2 pump and an inducible HCO3 utilizing accessory protein which supplies CO2 to the primary pump.  相似文献   
7.
We have examined tobacco transformed with an antisense construct against the Rieske-FeS subunit of the cytochromeb 6 f complex, containing only 15 to 20% of the wild-type level of cytochrome f. The anti-Rieske-FeS leaves had a comparable chlorophyll and Photosystem II reaction center stoichiometry and a comparable carotenoid profile to the wild-type, with differences of less than 10% on a leaf area basis. When exposed to high irradiance, the anti-Rieske-FeS leaves showed a greatly increased closure of Photosystem II and a much reduced capacity to develop non-photochemical quenching compared with wild-type. However, contrary to our expectations, the anti-Rieske-FeS leaves were not more susceptible to photoinhibition than were wild-type leaves. Further, when we regulated the irradiance so that the excitation pressure on photosystem II was equivalent in both the anti-Rieske-FeS and wild-type leaves, the anti-Rieske-FeS leaves experienced much less photoinhibition than wild-type. The evidence from the anti-Rieske-FeS tobacco suggests that rapid photoinactivation of Photosystem II in vivo only occurs when closure of Photosystem II coincides with lumen acidification. These results suggest that the model of photoinhibition in vivo occurring principally because of limitations to electron withdrawal from photosystem II does not explain photoinhibition in these transgenic tobacco leaves, and we need to re-evaluate the twinned concepts of photoinhibition and photoprotection.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlophenyl)-1,-dimethylurea - Fo and Fo minimal fluorescence when all PS II reaction centers are open in dark- and light-acclimated leaves, respectively - Fm and Fm maximal fluorescence when all PS II reaction centers are closed in dark- and light-acclimated leaves, respectively - Fv variable fluorescence (Fm-Fo) in dark acclimated leaves - Fv variable fluorescence (Fm-Fo) in lightacclimated leaves - NPQ non-photochemical quenching of fluorescence - PS I and PS II Photosystem I and II - P680 primary electron donor of the reaction center of PS II - PFD photosynthetic flux density - QA primary acceptor quinone of PS II - qp photochemical quenching of fluorescence - V+A+Z violaxanthin+antheraxanthin+zeaxanthin  相似文献   
8.
9.
Masle J  Hudson GS  Badger MR 《Plant physiology》1993,103(4):1075-1088
Growth of the R1 progeny of a tobacco plant (Nicotiana tabacum) transformed with an antisense gene to the small subunit of ribulose-1,5-carboxylase/oxygenase (Rubisco) was analyzed under 330 and 930 [mu]bar of CO2, at an irradiance of 1000 [mu]mol quanta m-2 s-1. Rubisco activity was reduced to 30 to 50% and 13 to 18% of that in the wild type when one and two copies of the antisense gene, respectively, were present in the genome, whereas null plants and wild-type plants had similar phenotypes. At 330 [mu]bar of CO2 all antisense plants were smaller than the wild type. There was no indication that Rubisco is present in excess in the wild type with respect to growth under high light. Raising ambient CO2 pressure to 930 [mu]bar caused plants with one copy of the DNA transferred from plasmid to plant genome to achieve the same size as the wild type at 330 [mu]bar, but plants with two copies remained smaller. Differences in final size were due mostly to early differences in relative rate of leaf area expansion (m2 m-2 d-1) or of biomass accumulation (g g-1 d-1): within less than 2 weeks after germination relative growth rates reached a steady-state value similar for all plants. Plants with greater carboxylation rates were characterized by a higher ratio of leaf carbon to leaf area, and at later stages, they were characterized also by a relatively greater allocation of structural and nonstructural carbon to roots versus leaves. However, these changes per se did not appear to be causing the long-term insensitivity of relative growth rates to variations in carboxylation rate. Nor was this insensitivity due to feedback inhibition of photosynthesis in leaves grown at high partial pressure of CO2 in the air (pa) or with high Rubisco activity, even when the amount of starch approached 40% of leaf dry weight. We propose that other intrinsic rate-limiting processes that are independent of carbohydrate supply were involved. Under plentiful nitrogen supply, reduction in the amount of nitrogen invested in Rubisco was more than compensated for by an increase in leaf nitrate. Nitrogen content of organic matter, excluding Rubisco, was unaffected by the antisense gene. In contrast, it was systematically lower at elevated pa than at normal pa. Combined with the positive effects of pa on growth, this resulted in the single-dose antisense plants growing as fast at 930 [mu]bar of CO2 as the wild-type plants at 330 [mu]bar of CO2 but at a lower organic nitrogen cost.  相似文献   
10.
Net O2 evolution, gross CO2 uptake and net HCO inf3 su– uptake during steady-state photosynthesis were investigated by a recently developed mass-spectrometric technique for disequilibrium flux analysis with cells of the marine cyanobacterium Synechococcus PCC7002 grown at different CO2 concentrations. Regardless of the CO2 concentration during growth, all cells had the capacity to transport both CO2 and HCO inf3 su– ; however, the activity of HCO inf3 su– transport was more than twofold higher than CO2 transport even in cyanobacteria grown at high concentration of inorganic carbon (Ci = CO2 + HCO inf3 su– ). In low-Ci cells, the affinities of CO2 and HCO inf3 su– transport for their substrates were about 5 (CO2 uptake) and 10 (HCO inf3 su– uptake) times higher than in high-Ci cells, while air-grown cells formed an intermediate state. For the same cells, the intracellular accumulated Ci pool reached 18, 32 and 55 mM in high-Ci, air-grown and low-Ci cells, respectively, when measured at 1 mM external Ci. Photosynthetic O2 evolution, maximal CO2 and HCO inf3 su– transport activities, and consequently their relative contribution to photosynthesis, were largely unaffected by the CO2 provided during growth. When the cells were adapted to freshwater medium, results similar to those for artificial seawater were obtained for all CO2 concentrations. Transport studies with high-Ci cells revealed that CO2 and HCO inf3 su– uptake were equally inhibited when CO2 fixation was reduced by the addition of glycolaldehyde. In contrast, in low-Ci cells steady-state CO2 transport was preferably reduced by the same inhibitor. The inhibitor of carbonic anhydrase ethoxyzolamide inhibited both CO2 and HCO inf3 su– uptake as well as O2 evolution in both cell types. In high-Ci cells, the degree of inhibition was similar for HCO inf3 su– transport and O2 evolution with 50% inhibition occurring at around 1 mM ethoxyzolamide. However, the uptake of CO2 was much more sensitive to the inhibitor than HCO inf3 su– transport, with an apparent I50 value of around 250 M ethoxyzolamide for CO2 uptake. The implications of our results are discussed with respect to Ci utilisation in the marine Synechococcus strain.Abbreviations Chl chlorophyll - Ci inorganic carbon (CO2 + HCO inf3 su– ) - CA carbonic anhydrase - CCM CO2-concentrating mechanism - EZA ethoxyzolamide - GA glycolaldehyde - K1/2 concentration required for half-maximal response - Rubisco ribulose-1,5,-bisphosphate carboxylase-oxygenase D.S. is a recipient of a research fellowship from the Deutsche Forschungsgemeinschaft (D.F.G.). In addition, we are grateful to Donald A. Bryant, Department of Molecular and Cell Biology and Center of Biomolecular Structure Function, Pennsylvania State University, USA, for sending us the wild-type strain of Synechococcus PCC7002.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号