首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 239 毫秒
1.
High light treatments were given to attached leaves of pumpkin (Cucurbita pepo L.) at room temperature and at 1°C where the diffusion- and enzyme-dependent repair processes of Photosystem II are at a minimum. After treatments, electron transfer activities and fluorescence induction were measured from thylakoids isolated from the treated leaves. When the photoinhibition treatment was given at 1°C, the Photosystem II electron transfer assays that were designed to require electron transfer to the plastoquinone pool showed greater inhibition than electron transfer from H2O to paraphenyl-benzoquinone, which measures all PS II centers. When the light treatment was given at room temperature, electron transfer from H2O to paraphenyl-benzoquinone was inhibited more than whole-chain electron transfer. Variable fluorescence measured in the presence of ferricyanide decreased only during room-temperature treatments. These results suggest that reaction centers of one pool of Photosystem II, non-QB-PS II, replace photoinhibited reaction centers at room temperature, while no replacement occurs at 1°C. A simulation of photoinhibition at 1°C supports this conclusion.Abbreviations BSA bovine serum albumin - Chl chlorophyll - DCMU 3-(3,4,-dichlorophenyl)-1,1,-dimethylurea - DCPIP dichlorophenol-indophenol (2,6-dichloro-4((4-hydroxyphenyl)imino)-2,5-cyclohexadien-1-one) - DPC diphenyl carbazide (2,2-diphenylcarbonic dihydrazide) - FeCN ferricyanide (hexacyanoferrate(III)) - app apparent quantum yield of photosynthetic oxygen evolution - MV methyl viologen (1,1-dimethyl-4,4-bipyridinium dichloride) - PPBQ phenyl-p-benzoquinone - PPFD photosynthetic photon flux density - PQ pool plastoquinone - QB secondary quinone acceptor of PS II - RT room temperature - WC whole chain electron transfer  相似文献   

2.
The inhibition of photosynthetic electron transport and the activity of photosynthetic carbon reduction cycle (PCR) enzymes under long-term water stress after slow dehydration was studied in non-nodulated Casuarina equisetifolia Forst. & Forst. plants. Initially, drought increased the fraction of closed Photosystem II (PS II) reaction centres (lowered qP) and decreased the quantum yield of PS II electron transport (PSII) with no enhancement of non-radiative dissipation of light energy (qN) because it increased the efficiency of electron capture by open PS II centres (Fv/Fm). As drought progressed, Fv/Fm fell and the decrease in PSII was associated with an increased qN. The kinetics of dark relaxation of fluorescence quenching pointed to an increase in a slowly-relaxing component under drought, in association with increased contents of zeaxanthin and antheraxanthin. Total NADP-dependent malate dehydrogenase activity increased and total stromal fructose-1,6-bisphosphatase activity decreased under drought, while the activation state of these enzymes remained unchanged. Water stress did not alter the activity and the activation state of ribulose bisphosphate carboxylase oxygenase.  相似文献   

3.
Wheat leaves were exposed to light treatments that excite preferentially Photosystem I (PS I) or Photosystem II (PS II) and induce State 1 or State 2, respectively. Simultaneous measurements of CO2 assimilation, chlorophyll fluorescence and absorbance at 820 nm were used to estimate the quantum efficiencies of CO2 assimilation and PS II and PS I photochemistry during State transitions. State transitions were found to be associated with changes in the efficiency with which an absorbed photon is transferred to an open PS II reaction centre, but did not correlate with changes in the quantum efficiencies of PS II photochemistry or CO2 assimilation. Studies of the phosphorylation status of the light harvesting chlorophyll protein complex associated with PS II (LHC II) in wheat leaves and using chlorina mutants of barley which are deficient in this complex demonstrate that the changes in the effective antennae size of Photosystem II occurring during State transitions require LHC II and correlate with the phosphorylation status of LHC II. However, such correlations were not found in maize leaves. It is concluded that State transitions in C3 leaves are associated with phosphorylation-induced modifications of the PS II antennae, but these changes do not serve to optimise the use of light absorbed by the leaf for CO2 assimilation.Abbreviations Fm, Fo, Fv maximal, minimal and variable fluorescence yields - Fm, Fv maximal and variable fluorescence yields in a light adapted state - LHC II light harvesting chlorophyll a/b protein complex associated with PS II - qP photochemical quenching - A820 light-induced absorbance change at 820 nm - PS I, PS II relative quantum efficiencies of PS I and PS II photochemistry - CO 2 quantum yield of CO2 assimilation  相似文献   

4.
The energy distribution, state transitions and photosynthetic electron flow during photoinhibition of Chlamydomonas reinhardtii cells have been studied in vivo using photoacoustics and modulated fluorescence techniques. In cells exposed to 2500 W/m2 light at 21 °C for 90 min, 90% of the oxygen evolution activity was lost while photochemical energy storage as expressed by the parameter photochemical loss (P.L.) at 710–720 nm was not impaired. The energy storage vs. modulation frequency profile indicated an endothermic step with a rate constant of 2.1 ms. The extent of the P.L. was not affected by DCMU but was greatly reduced by DBMIB. The regulatory mechanism of the state 1 to state 2 transition process was inactivated and the apparent light absorption cross section of photosystem II increased during the first 20 min of photoinhibition followed by a significant decrease relative to that of photosystem I. These results are consistent with the inactivation of the LHC II kinase and the presence of an active cyclic electron flow around photosystem I in photoinhibited cells.Abbreviations PS I, PS II Photosystem I and Photosystem II respectively - P.L. photochemical loss - DCMU 3-(3,4-dichlorophenyl-1,1-dimethyl urea - LHC II light harvesting chlorophyll a,b-protein complex of PS II - DBMIB 2,5 dibromo-3-methyl-6-isopropyl-p-benzoquinone  相似文献   

5.
Non-photochemical chlorophyll fluorescence quenching (qN) in barley leaves has been analysed by monitoring its relaxation in the dark, by applying saturating pulses of light. At least three kinetically distinct phases to qN recovery are observed, which have previously been identified (Quick and Stitt 1989) as being due to high-energy state quenching (fast), excitation energy redistribution due to a state transition (medium) and photoinhibition (slow). However, measurements of chlorophyll fluorescence at 77 K from leaf extracts show that state transitions only occur in low light conditions, whereas the medium component of qN is very large in high light. The source of that part of the medium component not accounted for by a state transition is discussed.Abbreviations ATP adenosine 5-triphosphate - DCMU 3[3,4-dichlorophenyl]-1,1 dimethylurea - pH trans-thylakoid pH gradient - Fo, Fm room-temperature chlorophyll fluorescence yield with all reaction centres open, closed - Fv variable fluorescence = Fm–Fo - LHC II Light harvesting complex II - PS I, PS II Photosystem I, II - P700, P680 primary donor in photosystem I, II - qP photochemical quenching of variable fluorescence - qN non-photochemical quenching of variable fluorescence - qNe, qNt, qNi non-photochemical quenching due to high energy state, state transition, photoinhibition - qNf, qNm, qNs components of qN relaxing fast, medium, slow - qr quenching of r relative to the dark state - tricine N-tris[hydroxymethyl]methylglycine - r ratio of fluorescence maximum from photosystem II to that from photosystem I at 77 K  相似文献   

6.
The pH dependence of maximum chlorophyll fluorescence yield (Fm) was examined in spinach thylakoids in the presence of nigericin to dissipate the transthylakoid pH gradient. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was present to eliminate photochemical quenching. Thylakoids were prepared from dark adapted leaves (dark thylakoids) or preilluminated leaves (light thylakoids). In the latter there had been approximately 50% conversion of the xanthophyll violaxanthin to zeaxanthin, while no conversion had occurred in the former. In the presence of a reductant such as ascorbate, antimycin A sensitive quenching was observed (half maximal quenching at 5 M), whose pH dependence differed between the two types of thylakoid. Preillumination of leaves resulted in more quenching at pH values where very little quenching was observed in dark thylakoids (pH 5–7.6). This was similar to activation of high-energy-state quenching (qE) observed previously (Rees D, Young A, Noctor G, Britton G and Horton P (1989) FEBS Lett 256: 85–90). Thylakoids isolated from preilluminated DTT treated leaves, that contained no zeaxanthin, behaved like dark thylakoids. A second form of quenching was observed in the presence of ferricyanide, that could be reversed by the addition of ascorbate. This was not antimycin A sensitive and showed the same pH dependence in both types of thylakoid. The former type of quenching, but not the latter, showed similar low temperature fluorescence emission spectra to qE, and was considered to occur by the same mechanism.Abbreviations DCMU 3(3,4-dichlorophenyl)-1,1-dimethylurea - DTT dithiothreitol - EDTA Ethylenediaminetetra-acetic acid - F0 dark level fluorescence yield - Fm maximum fluorescence yield - Fv/Fm ratio of variable to total fluorescence yield - Hepes 4-(2-hydroxyethyl)1-piperazineethanesul-phonic acid - Mes 2-(N-morpholino) ethanesulfonate - pH transthylakoid pH gradient - PS I Photosystem I - PS II Photosystem II - QA primary stable electron acceptor of Photosystem II - qE high-energy-state fluorescence quenching  相似文献   

7.
Synechococcus sp. PCC 7942 (Anacystis nidulans R2) contains two forms of the Photosystem II reaction centre protein D1, which differ in 25 of 360 amino acids. D1: 1 predominates under low light but is transiently replaced by D1:2 upon shifts to higher light. Mutant cells containing only D1:1 have lower photochemical energy capture efficiency and decreased resistance to photoinhibition, compared to cells containing D1:2. We show that when dark-adapted or under low to moderate light, cells with D1:1 have higher non-photochemical quenching of PS II fluorescence (higher qN) than do cells with D1:2. This is reflected in the 77 K chlorophyll emission spectra, with lower Photosystem II fluorescence at 697–698 nm in cells containing D1:1 than in cells with D1:2. This difference in quenching of Photosystem II fluorescence occurs upon excitation of both chlorophyll at 435 nm and phycobilisomes at 570 nm. Measurement of time-resolved room temperature fluorescence shows that Photosystem II fluorescence related to charge stabilization is quenched more rapidly in cells containing D1:1 than in those with D1:2. Cells containing D1:1 appear generally shifted towards State II, with PS II down-regulated, while cells with D1:2 tend towards State I. In these cyanobacteria electron transport away from PS II remains non-saturated even under photoinhibitory levels of light. Therefore, the higher activity of D1:2 Photosystem II centres may allow more rapid photochemical dissipation of excess energy into the electron transport chain. D1:1 confers capacity for extreme State II which may be of benefit under low and variable light.Abbreviations D1 the atrazine-binding 32 kDa protein of the PS II reaction centre core - D1:1 the D1 protein constitutively expressed during acclimated growth in Synechococcus sp. PCC 7942 - D1:2 an alternate form of the D1 protein induced under excess excitation in Synechococcus sp. PCC 7942 - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - Fo minimal fluorescence in the dark-adapted state - Fo minimal fluorescence in a light-adapted state - FM maximum fluorescence with all quenching mechanisms at a minimum, measured in presence of DCMU - FM maximal fluorescence in a light-adapted state, measured with a saturating flash - FMdark maximal fluorescence in the dark-adapted state - FV variable fluorescence in a light-adapted state (FM-Fo) - PAM pulse amplitude modulated fluorometer - qN non-photochemical quenching of PS II fluorescence - qN (dark) qN in the dark adapted state - qP photochemical quenching of fluorescence  相似文献   

8.
The involvement of phospholipids in the regulation of photosynthetic electron transport activities was studied by incubating isolated pea thylakoids with phospholipase C to remove the head-group of phospholipid molecules. The treatment was effective in eliminating 40–50% of chloroplast phospholipids and resulted in a drastic decrease of photosynthetic electron transport. Measurements of whole electron transport (H2Omethylviologen) and Photosystem II activity (H2Op-benzoquinone) demonstrated that the decrease of electron flow was due to the inactivation of Photosystem II centers. The variable part of fluorescence induction measured in the absence of electron acceptor was decreased by the progress of phospholipase C hydrolysis and part of the signal could be restored on addition of 3-(3,4-dicholorophenyl)-1,1-dimethylurea. The B and Q bands of thermoluminescence corresponding to S2S3QB and S2S3QA charge recombination, respectively, was also decreased with a concomitant increase of the C band, which originated from the tyrosine D+QA charge recombination. These results suggest that phospholipid molecules play an important role in maintaining the membrane organization and thus maintaining the electron transport activity of Photosystem II complexes.Abbreviations DCMU 3-(3,4-dicholorophenyl)-1,1-dimethylurea - Fvar variable fluorescence - LHC light-harvesting complex - MGDG monogalactosyldiacylglycerol - PS photosystem  相似文献   

9.
The analysis of photochemical activities of Photosystem I and Photosystem II in spheroplasts from normal and photobleached Anabaena cylindrica showed an increase in Photosystem II activity relative to Photosystem I in photobleached cells. We suggest that the reasons for this modification in photochemical activity are, (i) a rearrangement of pigments between the two photosystems, and (ii) improved functional condition of the photosynthetic units in Photosystem II.Abbreviations PSI Photosystem I - PSII Photosystem II - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea - MV methylviologen - DCPIP 1,6-dichlorphenol indophenol - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - FeCN Ferricyanide - APC anophycocyanin - PC phycocyanin  相似文献   

10.
A Synechococcus sp. strain PCC 7002 psaAB::cat mutant has been constructed by deletional interposon mutagenesis of the psaA and psaB genes through selection and segregation under low-light conditions. This strain can grow photoheterotrophically with glycerol as carbon source with a doubling time of 25 h at low light intensity (10 E m–2 s–1). No Photosystem I (PS I)-associated chlorophyll fluorescence emission peak was detected in the psaAB::cat mutant. The chlorophyll content of the psaAB::cat mutant was approximately 20% that of the wild-type strain on a per cell basis. In the absence of the PsaA and PsaB proteins, several other PS I proteins do not accumulate to normal levels. Assembly of the peripheral PS I proteins PsaC,PsaD, PsaE, and PsaL is dependent on the presence of the PsaA and PsaB heterodimer core. The precursor form of PsaF may be inserted into the thylakoid membrane but is not processed to its mature form in the absence of PsaA and PsaB. The absence of PS I reaction centers has no apparent effect on Photosystem II (PS II) assembly and activity. Although the mutant exhibited somewhat greater fluorescence emission from phycocyanin, most of the light energy absorbed by phycobilisomes was efficiently transferred to the PS II reaction centers in the absence of the PS I. No light state transition could be detected in the psaAB::cat strain; in the absence of PS I, cells remain in state 1. Development of this relatively light-tolerant strain lacking PS I provides an important new tool for the genetic manipulation of PS I and further demonstrates the utility of Synechococcus sp. PCC 7002 for structural and functional analyses of the PS I reaction center.Abbreviations ATCC American type culture collection - Chl chlorophyll - DCMU 3-(3,4-dichlorophyl)-1,1-dimethylurea - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - HEPES N-[2-hydroxyethyl]piperazine-N-[2-ethanesulfonic acid] - PCC Pasteur culture collection - PS I Photosystem I - PS II Photosystem II - SDS sodium dodecyl sulfate  相似文献   

11.
The yield of photosynthetic O2 evolution was measured in cultures of Dunaliella C9AA over a range of light intensities, and a range of low temperatures at constant light intensity. Changes in the rate of charge separation at Photosystem I (PS I) and Photosystem II (PS II) were estimated by the parameters PS I and PS II . PS I is calculated on the basis of the proportion of centres in the correct redox state for charge separation to occur, as measured spectrophotometrically. PS II is calculated using chlorophyll fluorescence to estimate the proportion of centres in the correct redox state, and also to estimate limitations in excitation delivery to reaction centres. With both increasing light intensity and decreasing temperature it was found that O2 evolution decreased more than predicted by either PS I or PS II. The results are interpreted as evidence of non-assimilatory electron flow; either linear whole chain, or cyclic around each photosystem.Abbreviations F0 dark level of chlorophyll fluorescence yield (PS II centres open) - Fm maximum level of chlorophyll fluorescence yield (PS II centres closed) - Fv variable fluorescence (Fm-F0) - PS I Photosystem I - PS II Photosystem II - P700 reaction centre chlorophyll(s) of PS I - qN coefficient of non-photochemical quenching of chlorophyll fluorescence - qP coefficient of photochemical quenching of fluorescence yield - qE high-energy-state quenching coefficient - PS I yield of PS I - PS II yield of PS II - S yield of photosynthetic O2 evolution - P intrinsic yield of open PS II centres  相似文献   

12.
In dark-adapted spinach leaves approximately one third of the Photosystem II (PS II) reaction centers are impaired in their ability to transfer electrons to Photosystem I. Although these inactive PS II centers are capable of reducing the primary quinone acceptor, QA, oxidation of QA occurs approximately 1000 times more slowly than at active centers. Previous studies based on dark-adapted leaves show that minimal energy transfer occurs from inactive centers to active centers, indicating that the quantum yield of photosynthesis could be significantly impaired by the presence of inactive centers. The objective of the work described here was to determine the performance of inactive PS II centers in light-adapted leaves. Measurements of PS II activity within leaves did not indicate any increase in the concentration of active PS II centers during light treatments between 10 s and 5 min, showing that inactive centers are not converted to active centers during light treatment. Light-induced modification of inactive PS II centers did occur, however, such that 75% of these centers were unable to sustain stable charge separation. In addition, the maximum yield of chlorophyll fluorescence associated with inactive PS II centers decreased substantially, despite the lack of any overall quenching of the maximum fluorescence yield. The effect of light treatment on inactive centers was reversed in the dark within 10–20 mins. These results indicate that illumination changes inactive PS II centers into a form that quenches fluorescence, but does not allow stable charge separation across the photosynthetic membrane. One possibility is that inactive centers are converted into centers that quench fluorescence by formation of a radical, such as reduced pheophytin or oxidized P680. Alternatively, it is possible that inactive PS II centers are modified such that absorbed excitation energy is dissipated thermally, through electron cycling at the reaction center.Abbreviations A518 absorbance change at 518 nm, reflecting the formation of an electric field across the thylakoid membrane - AFL1 amplitude of the fast (<100 ms) phase of A518 induced by the first of two saturating, single-turnover flashes spaced 30 ms apart - AFL2 amplitude of the fast (<100 ms) phase of A518 induced by the second of two saturating, single-turnover flashes spaced 50 ms apart - DCBQ 2,6-dichloro-p-benzoquinone - Fo yield of chlorophyll fluorescence when QA is fully oxidized - Fm yield of chlorophyll fluorescence when QA is fully reduced - Fx yield of chlorophyll fluorescence when QA is fully reduced at inactive PS II centers, but fully oxidized at active PS II centers - Pheo pheophytin - P680 the primary donor of Photosystem II - PPFD photosynthetic photon flux density - QA Primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II  相似文献   

13.
The components of non-photochemical chlorophyll fluorescence quenching (qN) in barley leaves have been quantified by a combination of relaxation kinetics analysis and 77 K fluorescence measurements (Walters RG and Horton P 1991). Analysis of the behaviour of chlorophyll fluorescence parameters and oxygen evolution at low light (when only state transitions — measured as qNt — are present) and at high light (when only photoinhibition — measured as qNi — is increasing) showed that the parameter qNt represents quenching processes located in the antenna and that qNi measures quenching processes located in the reaction centre but which operate significantly only when those centres are closed. The theoretical predictions of a variety of models describing possible mechanisms for high-energy-state quenching, measured as the residual quenching, qNe, were then tested against the experimental data for both fluorescence quenching and quantum yield of oxygen evolution. Only one model was found to agree with these data, one in which antennae exist in two states, efficient in either energy transfer or energy dissipation, and in which those photosynthetic units in a dissipative state are unable to exchange energy with non-dissipative units.Abbreviations: Fo, Fm room-temperature chlorophyll fluorescence yield with all centres open, closed - Fv variable fluorescence yield - LHC II light-harvesting chlorophyll-protein complex of PS II - PS I, PS II Photosystem I, II - P700, P680 primary donor in Photosystem I, II - QA primary electron acceptor of PS II - Pmax maximum quantum yield of oxygen evolution - qN coefficient of non-photochemical quenching of variable fluorescence - qNe, qNt, qNi coefficient of non-photochemical quenching due to high-energy-state, state transition, photoinhibition - qO coefficient of quenching of dark level fluorescence - qP coefficient of photochemical quenching of variable fluorescence - P intrinsic quantum yield of open PS II reaction centres = s/qP - PS 2 quantum yield of PS = qP × Fv/Fm - S quantum yield of oxygen evolution = rate of oxygen evolution/light intensity  相似文献   

14.
We have investigated the effect of some metabolic drugs, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2,4-dinitrophenol (DNP), sodium azide (NaN3), on the photobehavior of single cells of Euglena gracilis, in order to clarify the relevance of different metabolic pathways in the process of photoperception and sensory transduction in this alga. The results obtained show that the photophobic response of Euglena is not affected by the action of these drugs. This suggests that neither the photosynthetic process nor oxidative phosphorylation play a significant role in the phenomenon of photosensory transduction in Euglena.List of Abbreviations DNP 2,4-dinitrophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PSI Photosystem I - PSII Photosystem II  相似文献   

15.
Chloroplast proteins were phosphorylated under two test conditions: white light irradiance alone and white light irradiance with the addition of glucose and glucose oxidase, used to produce an anaerobic medium. The interaction of phospho-LHC II with Photosystem 1 (PS 1) was studied for two types of PS I preparation. Changes in the chlorophyll a/b ratio and the ratio of 650 and 680 nm band intensities (E650/E680) in fluorescence excitation spectra were used in calculating the phospho-LHC II portion which became associated with PS 1. It is shown that the associated portion of phospho-LHC II varies for each of the PS 1 preparations and phosphorylation procedures. Possible conclusions as regards the transfer of various sets of LHC II subpopulations under different phosphorylation procedures and the differences of interaction with PS 1 are discussed.Abbreviations PS 1 Photosystem 1 - PS 2 Photosystem 2 - LHC II light-harvesting chlorophyll a/b protein complex II - Chl chlorophyll - fluorescence quantum yield - f life time of fluorescence at =685 nm - F735 fluorescence band with a maximum at 735 nm - F685 fluorescence band with a maximum at 685 nm - E650/E680 ratio of amplitudes in excitation fluorescence spectrum at 650 and 680 nm  相似文献   

16.
A comparison of the effects of ionic stress and an uncoupler on long-term fluorescence transients (the Kautsky effect) in the green alga Dunaliella tertiolecta indicated that the large quenching induced by ionic stress was caused by a pH gradient across the thylakoid membrane. This possiblity was given support by the increase in the slow phase of 3-(3,4-dichlorophenyl)-1,1-dimethylurea-induced fluorescence relaxation in algae subjected to ionic stress. Low-temperature fluorescence emission spectra indicated that salt stress enhanced photosystem-I emission in the dark, and a comparison of simultaneous emissions at 695 and 720 nm at room temperature indicated a further increase in photosystem-I emission during the fluorescence transients. Taken together with the decrease in the fast phase of 3-(3,4-dichlorophenyl)-1,1-dimethylurea-induced fluorescence relaxation in stressed algae, our results indicate that ionic stress stimulates cyclic electron flow, and that non-cyclic flow is inhibited. The effect of sucrose-induced osmotic stress was similar to, but less marked than, the effects of NaCl and KCl; the effect of decreasing the external salinity was small.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - FCCP carbonylcyanide p-trifluoromethoxyphenylhydrazone - PSI, II photosystem I, II  相似文献   

17.
Barley seedlings (Hordeum vulgare L. Boone) were grown at 20°C with 16 h/8 h light/dark cycle of either high (H) intensity (500 mole m-2 s-1) or low (L) intensity (55 mole m-2 s-1) white light. Plants were transferred from high to low (H L) and low to high (L H) light intensity at various times from 4 to 8 d after leaf emergence from the soil. Primary leaves were harvested at the beginning of the photoperiod. Thylakoid membranes were isolated from 3 cm apical segments and assayed for photosynthetic electron transport, Photosystem II (PS II) atrazine-binding sites (QB), cytochrome f(Cytf) and the P-700 reaction center of Photosystem I (PS I). Whole chain, PS I and PS II electron transport activities were higher in H than in L controls. QB and Cytf were elevated in H plants compared with L plants. The acclimation of H L plants to low light occurred slowly over a period of 7 days and resulted in decreased whole chain and PS II electron transport with variable effects on PS I activity. The decrease in electron transport of H L plants was associated with a decrease in both QB and Cytf. In L H plants, acclimation to high light occurred slowly over a period of 7 days with increased whole chain, PS I and PS II activities. The increase in L H electron transport was associated with increased levels of QB and Cytf. In contrast to the light intensity effects on QB levels, the P-700 content was similar in both control and transferred plants. Therefore, PS II/PS I ratios were dependent on light environment.Abbreviations Asc ascorbate - BQ 2,5-dimethyl-p-benzoquinone - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCIP 2,6-dichlorophenolindophenol - H control plants grown under high light intensity - H L plants transferred from high to low light intensity - L low control plants grown under low light intensity - L H plants transferred from low to high light intensity - MV methyl viologen - P-700 photoreaction center of Photosystem I - QB atrazine binding site - TMPD N,N,N,N-tetramethyl-p-phenylenediamine Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC. Paper No. 11990 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, USA.  相似文献   

18.
The building up of the two types of reaction centers, PS II and PS II, was investigated during the greening of Euglena gracilis Z cells in resting medium. The maximal values in the proportion of PS II centers (55%) and in the oxygen evolved per chlorophyll were reached at the outbreak of greening, when accumulation of galactolipids (MGDG and DGDG) rich in unsaturated fatty acids occurred, and when anionic lipids (SQDG and PG) emerged. As the greening progressed, the chlorophyll accumulation corresponded to a secondary enrichment in PS II centers, which built up more rapidly than PS II centers; correlatively, a general saturation of the fatty acids constitutive of all lipid classes took place.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DGDG digalactosyldiacylglycerol - FAME Tatty acid methyl esters - HEPES acide (N-[2-hydroxyethyl]piperazine-N-[2-ethane sulfonic] - MGDG monogalactosyldiacylglycerol - PC phosphatidylcholine - PE phosphatidylethanolamine - PG phosphatidylglycerol - PQ plastoquinone - PS I Photosystem I - PS II Photosystem II - QA primary quinone electron acceptor of PS II - QB secondary quinone electron acceptor of PS II - SQDG sulfoquinovosyldiacylglycerol  相似文献   

19.
4-Methylumbelliferyl 6-O-benzyl--d-lactoside (6Bn-MU-Lac) and some related compounds were synthesizedvia different selective reactions including phase-transfer glycosylation. Their suitability as substrates for a fluorometric assay of ceramide glycanase (CGase) was evaluated. Among others, the 6Bn-MU-Lac, which is resistant to exogalactosidase, was found to be a suitable substrate for routine assay of the CGase activity. For American leech CGase, theK m value is 0.232 mM at pH 5. Abbreviations: CGase, ceramide glycanase; Gal, galactose; Glc, Glucose; Lac, lactose; MU, 4-methylumbelliferone; MU-Lac, 4-methylumbelliferyl -d-lactoside; bBn-Lac, 6-O-benzyl-lactose; 6Bn-MU-Lac, 4-methylumbelliferyl 6-Obenzyl--d-lactoside; 46Bd-MU-Lac, 4-methylumbelliferyl 4,6-O-benzylidene--d-lactoside; MU-Cel, 4-methylumbellifery -d-cellobioside; 46Bd-MU-Cel, 4-methylumbelliferyl 4,6-O-benzylidene--d-cellobioside; TLC, thin layer chromatography;1H-NMR, proton nuclear magnetic resonance; GSL, glycosphingolipids; CSA, 10-camphorsulfonic acid. See Scheme 1 for chemical structures.  相似文献   

20.
Summary The absence of the methyl substituent at the 2position of the cyclohexene ring of TCHP enhances the conversion rate as well as the yields of the 3-hydroxy product obtained byStreptomyces natalensis and the 3-keto product obtained byMycobacterium smegmatis.Abbreviations TCHP 1-(2-thienyl)-3-(1-cyclohexen-1-yl)-1-propanone - TCHP-OH 1-(2-thienyl)-3-(3-hydroxyl-1-cyclohexen-1-yl)-1-propanone - TCHP-ketone 1-(2-thienyl)-3-(1-cyclohexen-1-yl-3-one)-1-propane - TMCHP 1-(2-thienyl)-3-(2-methyl-1-cyclohexen-1-yl)-propanone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号