首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   643篇
  免费   47篇
  2023年   1篇
  2022年   7篇
  2021年   15篇
  2020年   10篇
  2019年   9篇
  2018年   12篇
  2017年   15篇
  2016年   25篇
  2015年   37篇
  2014年   43篇
  2013年   46篇
  2012年   74篇
  2011年   44篇
  2010年   34篇
  2009年   34篇
  2008年   46篇
  2007年   45篇
  2006年   34篇
  2005年   31篇
  2004年   29篇
  2003年   16篇
  2002年   18篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   7篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1967年   1篇
  1964年   2篇
  1963年   3篇
排序方式: 共有690条查询结果,搜索用时 78 毫秒
1.
Scavenging of superoxide radical by ascorbic acid   总被引:1,自引:0,他引:1  
Using acetaldehyde and xanthine oxidase as the source of suPeroxide radical, the second order rate constant for the reaction between ascorbic acid and superoxide radical was estimated to be 8.2 X 107 M-1 s-1. In rats, the average tissue concentration of ascorbic acid was of the order of 10-3 M and that of superoxide dismutase was of the order of 10-6 M. So, taking together both the rate constants and the tissue concentrations, the efficacy of ascorbic acid for scavenging superoxide radical in animal tissues appears to be better than that of suPeroxide dismutase. The significance of ascorbic acid as a scavenger of superoxide radical has been discussed from the point of view of the evolution of ascorbic acid synthesizing capacity of terrestrial vertebrates.  相似文献   
2.
The large family of signal transducing proteins known as G proteins are heterotrimers that dissociate into an independent α-subunit and βγ-subunit complex after ligand binding or other stimulation. For Gα, at least 30 distinct sequences representing 10 different classes have been identified. On the other hand, cDNAs for only three Gβ-subunit genes have been isolated so far. All three of the Gβ genes have been chromosomally mapped in the human, but only two in the mouse. Using a human retinal cDNA for the third G protein β-subunit, we have mapped the corresponding gene, termed Gnb-3, to mouse Chromosome 6 with somatic cell hybrids and have positioned it distal to but near the marker Raf-1 by analysis of the progeny of three genetic crosses.  相似文献   
3.
Summary In the qualitative short-day plant Impatiens balsamina, gibberellic acid (GA3) not only promoted the formation of floral buds in response to suboptimal photoinductive conditions and reduced the number of SD cycles that are required for their development into flowers, but also caused initiation of floral buds under non-inductive photoperiods. In plants treated with repeated applications of GA3, the floral buds developed into flowers irrespective of whether the apex was left intact or was removed. In those that received a single application of GA3 the floral buds developed into flowers only in decapitated plants.  相似文献   
4.
Abstract Cationic amphiphilic drugs (CADs) of varied clinical use were screened to determine their capacity to alter the pattern of labeling with 32Pj of cerebral cortex mince phospholipids. The altered phospholipid labeling patterns were qualitatively similar, the prominent features being reduced incorporation into phosphatidylcholine and increased incorporation into phosphatidic acid. Relative potencies were: (±)-propranolol > chlorpromazine = 4,4'-bis(diethylaminoethoxy) α,β -diethyldiphenylethane > desipramine > di-bucaine > pimozide > oxymetazoline = fenfluramine = haloperidol = chloroquine > amphetamine = no drug added. Propranolol was used to study the action of CADs further. Its effect was time- and dose-dependent, but in contrast with pineal gland, no label appeared in phosphatidyl-CMP (CDP-diacylglycerol), nor did dialysis of the mince to reduce diffusible substrates or exogenous addition of substrates cause appearance of liponucleotide. Thus lack of diffusible precursors is not responsible for CAD effects in vitro. Pulse-chase experiments with 32P1 and [2-3H]glycerol suggested that inhibition of phosphatidate phosphohydrolase may be partly responsible for the observed alterations in phospholipid labeling in the presence of CADs.  相似文献   
5.
6.
Hexavalent chromium contamination is a serious problem due to its high toxicity and carcinogenic effects on the biological systems. The enzymatic reduction of toxic Cr(VI) to the less toxic Cr(III) is an efficient technology for detoxification of Cr(VI)-contaminated industrial effluents. In this regard, a chromate reductase enzyme from a novel Ochrobactrum sp. strain Cr-B4, having the ability to detoxify Cr(VI) contaminated sites, has been partially purified and characterized. The molecular mass of this chromate reductase was found to be 31.53 kD, with a specific activity 14.26 U/mg without any addition of electron donors. The temperature and pH optima for chromate reductase activity were 40°C and 8.0, respectively. The activation energy (Ea) for the chromate reductase was found to be 34.7 kJ/mol up to 40°C and the activation energy for its deactivation (Ed) was found to be 79.6 kJ/mol over a temperature range of 50–80°C. The frequency factor for activation of chromate reductase was found to be 566.79 s?1, and for deactivation of chromate reductase it was found to be 265.66 × 103 s?1. The reductase activity of this enzyme was affected by the presence of various heavy metals and complexing agents, some of which (ethylenediamine tetraacetic acid [EDTA], mercaptoethanol, NaN3, Pb2+, Ni2+, Zn2+, and Cd2+) inhibited the enzyme activity, while metals like Cu2+ and Fe3+ significantly enhanced the reductase activity. The enzyme followed Michaelis–Menten kinetics with Km of 104.29 µM and a Vmax of 4.64 µM/min/mg.  相似文献   
7.
Bacterial DNA topoisomerase I (topoI) carries out relaxation of negatively supercoiled DNA through a series of orchestrated steps, DNA binding, cleavage, strand passage and religation. The N-terminal domain (NTD) of the type IA topoisomerases harbor DNA cleavage and religation activities, but the carboxyl terminal domain (CTD) is highly diverse. Most of these enzymes contain a varied number of Zn2+ finger motifs in the CTD. The Zn2+ finger motifs were found to be essential in Escherichia coli topoI but dispensable in the Thermotoga maritima enzyme. Although, the CTD of mycobacterial topoI lacks Zn2+ fingers, it is indispensable for the DNA relaxation activity of the enzyme. The divergent CTD harbors three stretches of basic amino acids needed for the strand passage step of the reaction as demonstrated by a new assay. We also show that the basic amino acids constitute an independent DNA-binding site apart from the NTD and assist the simultaneous binding of two molecules of DNA to the enzyme, as required during the catalytic step. Although the NTD binds to DNA in a site-specific fashion to carry out DNA cleavage and religation, the basic residues in CTD bind to non-scissile DNA in a sequence-independent manner to promote the crucial strand passage step during DNA relaxation. The loss of Zn2+ fingers from the mycobacterial topoI could be associated with Zn2+ export and homeostasis.  相似文献   
8.
Apple is known to be susceptible to various virus and viroid pathogens. Symptomatic apple cultivars and rootstocks were collected and analyzed by ELISA and then through RT-PCR. The study reports the presence of Apple mosaic virus (ApMV), Apple stem grooving virus (ASGV), Apple stem pitting virus (ASPV), Apple chlorotic leaf spot virus (ACLSV), the major apple viruses and Prunus necrotic ringspot virus (PNRSV), a minor apple virus, at the molecular level in India. Apple scar skin viroid (ASSVd) infection was also confirmed at the molecular level. Sporadic incidences of Tomato ringspot virus and Arabis mosaic virus infections were also detected by ELISA in nursery plants.  相似文献   
9.
Soil from a pulse cultivated farmers land of Odisha, India, have been subjected to incubation studies for 40 consecutive days, to establish the impact of various nitrogenous fertilizers and water filled pore space (WFPS) on green house gas emission (N2O & CH4). C2H2 inhibition technique was followed to have a comprehensive understanding about the individual contribution of nitrifiers and denitrifiers towards the emission of N2O. Nevertheless, low concentration of C2H2 (5 ml: flow rate 0.1 kg/cm2) is hypothesized to partially impede the metabolic pathways of denitrifying bacterial population, thus reducing the overall N2O emission rate. Different soil parameters of the experimental soil such as moisture, total organic carbon, ammonium content and nitrate–nitrogen contents were measured at regular intervals. Application of external N-sources under different WFPS conditions revealed the diverse role played by the indigenous soil microorganism towards green house gas emission. Isolation of heterotrophic microorganisms (Pseudomonas) from the soil samples, further supported the fact that denitrification might be prevailing during specific conditions thus contributing to N2O emission. Statistical analysis showed that WFPS was the most influential parameter affecting N2O formation in soil in absence of an inhibitor like C2H2.  相似文献   
10.
During the fusion of the influenza virus to the host cell, bending of the HA2 chain of hemagglutinin into a hairpin-shaped structure in a pH-dependent manner facilitates the fusion of the viral envelope and the endosomal membrane. To characterize the structural and dynamical responses of the hinge region of HA2 to pH changes and examine the role of a conserved histidine in this region (the hinge histidine), we have performed an extensive set of molecular dynamics (MD) simulations of 26-residue peptides encompassing the hinge regions of several hemagglutinin subtypes under both neutral and low pH conditions, modeled by the change of the protonation state of the hinge histidine. More than 70 sets of MD simulations (collectively amounting to 25.1 μs) were performed in both implicit and explicit solvents to study the effect of histidine protonation on structural dynamics of the hinge region. In both explicit and implicit solvent simulations, hinge bending was consistently observed upon the protonation of the histidine in all the simulations starting with an initial straight helical conformation, whereas the systems with a neutral histidine retained their primarily straight conformation throughout the simulations. Conversely, the MD simulations starting from an initially bent conformation resulted in the formation of a straight helical structure upon the neutralization of the hinge histidine, whereas the bent structure was maintained when the hinge histidine remained protonated. Finally, mutation of the hinge histidine to alanine abolishes the bending response of the peptide altogether. A molecular mechanism based on the interaction of the hinge histidine with neighboring acidic residues is proposed to be responsible for its role in controlling the conformation of the hinge. We propose that this might present a common mechanism for pH-controlled structural changes in helical structures when histidines act as the pH sensor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号