首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   5篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2010年   13篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   8篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
排序方式: 共有99条查询结果,搜索用时 172 毫秒
1.
The metabolic fate of the isomeric catecholestrogens 4-hydroxyestradiol (4-OHE2) and 2-hydroxyestradiol (2-OHE2) was studied to elucidate possible differences in their metabolism as an explanation for their different bioactivities. Healthy young men (n = 3 each) were infused (90 min) with 4-OHE2 (60 micrograms/h) or 2-OHE2 (100 micrograms/h). The main metabolites were determined in plasma and urine before, during and after infusion. Unconjugated and conjugated steroids, the latter after hot acid hydrolysis, were subjected to chromatography on LH-20 columns and measured by specific RIAs. During the infusion 4-OHE2 reached significant plasma concentrations whereas 2-OHE2 was so rapidly metabolised that its plasma levels remained virtually undetectable in spite of a higher infusion rate. The metabolism of 4-OHE2 was dominated by direct conjugation, that of 2-OHE2 by methyl ether formation. These findings were corroborated by the urinary excretion rates: during the infusion and the first hours afterwards, 4-OHE2 was mainly excreted as 4-OHE2 and 4-hydroxyestrone, while 2-OHE2 was predominantly excreted as 2-hydroxyestradiol 2-methyl ether and 2-hydroxyestrone 2-methyl ether.  相似文献   
2.
We compared the ability of estradiol and progesterone to modulate gonadotropin-releasing hormone (GnRH) and protein kinase C (PKC)-mediated luteinizing hormone (LH) secretion. Long-term (48 h) treatment of rat pituitary cells with 1 nM estradiol enhanced GnRH and phorbol ester (TPA)-stimulated LH secretion. This positive effect was facilitated by additional short-term (4 h) treatment with progesterone (100 nM). However, long-term progesterone treatment, which inhibited GnRH-stimulated LH secretion, did not influence TPA-stimulated gonadotropin release. These steroid actions occurred without an effect on the total amount of LH in the cell cultures (total LH = LH secreted + LH remaining in the cell) and neither the secretagogues nor the steroids altered total LH. Since GnRH or TPA-induced LH secretion depends on Ca2+ influx into the gonadotroph, we also analyzed the effects of estradiol and progesterone under physiological extracellular Ca2+ concentrations and in the absence of extracellular Ca2+. The steroids were able to influence GnRH or TPA-induced LH secretion under both conditions. However, when TPA was used as stimulus in Ca(2+)-deficient medium the relative changes induced by estradiol and progesterone were more pronounced, possibly indicating that the extracellular Ca(2+)-independent component of PKC-mediated LH secretion is more important for the regulation of the steroid effects. It is concluded that estradiol and progesterone might mediate their modulatory actions on GnRH-stimulated LH secretion via an influence on PKC. This effect can occur independently from de novo synthesis of LH and Ca2+ influx into gonadotrophs.  相似文献   
3.
Acute (0.5–4 h) treatment of estradiol (E)-primed female rat pituitary cells with progesterone (P) augments gonadotropin-releasing hormone (GnRH)-induced LH release, whereas chronic (48 h) P-treatment reduces pituitary responsiveness to the hypothalamic decapeptide. Dispersed E-primed (48 h, 1 nM) rat pituitary cells were cultured for 4 or 48 h in the presence of 100 nM P to assess the effects of the progestagen on GnRH receptors and on gonadotrope responsiveness to the decapeptide. P-treatment (4 h) significantly augmented GnRH-receptor concentrations (4.44 ± 0.6 fmol/106 cells) as compared to cells treated only with E (2.6 ± 0.5fmol/106 cells). Parallel significant changes in GnRH-induced LH secretion were observed. The acute increase in GnRH-receptor number was nearly maximal (180% of receptor number in cells treated with E alone) within 30 min of P addition. Chronic P-treatment (48 h) significantly reduced pituitary responsiveness to GnRH as compared to E-treatment. The GnRH-receptor concentrations (3.9 ± 0.6 fmol/106 cells), however, remained elevated above those in E-primed cells. GnRH-receptor affinity was not influenced by any of the different treatments. These results indicate that the acute facilitatory P-effect on GnRH-induced LH release is at least chronologically closely related to an increase in GnRH-receptor concentration. The chronic negative P-effect on pituitary responsiveness to GnRH, however, shows no relation to changes in available GnRH receptors.  相似文献   
4.
5.
Under the protection of ascorbic acid a 2-hydroxyestrone bovine serum albumin conjugate was prepared containing intact 2-hydroxyestrone as determined by gas chromatographymass spectrometry. Using this antigen highly specific antibodies were raised in rabbits. Cross-reactivity for 2-hydroxyestradiol and 2-hydroxyestriol was 26 and 4.5%, respectively. An assay procedure of 2-hydroxyestrone in human plasma is described. Using special precautions the assay allows the determination of 2-hydroxyestrone in plasma samples of women (50–95 pg/ml), pregnant women (105–220 pg/ml), men (45–65 pg/ml) and children (20–40 pg/ml).  相似文献   
6.
The actin and microtubule cytoskeletons regulate cell shape across phyla, from bacteria to metazoans. In organisms with cell walls, the wall acts as a primary constraint of shape, and generation of specific cell shape depends on cytoskeletal organization for wall deposition and/or cell expansion. In higher plants, cortical microtubules help to organize cell wall construction by positioning the delivery of cellulose synthase (CesA) complexes and guiding their trajectories to orient newly synthesized cellulose microfibrils. The actin cytoskeleton is required for normal distribution of CesAs to the plasma membrane, but more specific roles for actin in cell wall assembly and organization remain largely elusive. We show that the actin cytoskeleton functions to regulate the CesA delivery rate to, and lifetime of CesAs at, the plasma membrane, which affects cellulose production. Furthermore, quantitative image analyses revealed that actin organization affects CesA tracking behavior at the plasma membrane and that small CesA compartments were associated with the actin cytoskeleton. By contrast, localized insertion of CesAs adjacent to cortical microtubules was not affected by the actin organization. Hence, both actin and microtubule cytoskeletons play important roles in regulating CesA trafficking, cellulose deposition, and organization of cell wall biogenesis.Plant cells are surrounded by a flexible yet durable extracellular matrix that makes up the cell wall. This structure offers mechanical strength that counters osmotically driven turgor pressure, is an important factor for water movement in plants, acts as a physical barrier against pathogens (Somerville et al., 2004), and is a determining factor for plant cell morphogenesis. Hence, the cell wall plays a central role in plant biology.Two main types of cell walls can typically be distinguished: the primary and the secondary cell wall. The major load-bearing component in both of these cell walls is the β-1,4-linked glucan polymer cellulose (Somerville et al., 2004). Cellulose polymers are synthesized by plasma membrane (PM)-localized cellulose synthase (CesA) complexes (Mueller and Brown, 1980), which contain several CesA subunits with similar amino acid sequences (Mutwil et al., 2008a). The primary wall CesA complexes are believed to be assembled in the Golgi and are subsequently delivered to the PM via vesicular trafficking (Gutierrez et al., 2009), sometimes associated with Golgi pausing (Crowell et al., 2009). Furthermore, the primary wall CesA complexes are preferentially inserted into the PM at sites that coincide with cortical microtubules (MTs), which subsequently guide cellulose microfibril deposition (Gutierrez et al., 2009). Hence, the cortical MT array is a determinant for multiple aspects of primary wall cellulose production.The actin cytoskeleton plays a crucial role in organized deposition of cell wall polymers in many cell types, including cellulose-related polymers and pectins in tip-growing cells, such as pollen tubes and root hairs (Hu et al., 2003; Chen et al., 2007). Thus, actin-depolymerizing drugs and genetic manipulation of ACTIN genes impair directed expansion of tip-growing cells and long-distance transport of Golgi bodies with vesicles to growing regions (Ketelaar et al., 2003; Szymanski, 2005). In diffusely growing cells in roots and hypocotyls, loss of anisotropic growth has also been observed in response to mutations to vegetative ACTIN genes and to actin-depolymerizing and -stabilizing drugs (Baluska et al., 2001; Kandasamy et al., 2009). While actin is clearly important for cell wall assembly, it is less clear what precise roles it plays.One well-known function of actin in higher plants is to support intracellular movement of cytoplasmic organelles via actomyosin-based motility (Geisler et al., 2008; Szymanski, 2009). During primary wall synthesis in interphase cells, treatment with the actin assembly inhibitor latrunculin B (LatB) led to inhibition of Golgi motility and pronounced inhomogenities in CesA density at the PM (Crowell et al., 2009; Gutierrez et al., 2009) that coincided with the density of underlying and immobile Golgi bodies (Gutierrez et al., 2009). These results suggested that Golgi motility is important for CesA distribution (Gutierrez et al., 2009). The actin cytoskeleton also appears to be important for secondary wall cellulose microfibril deposition. For example, longitudinal actin filaments (AFs) define the movement of secondary wall CesA-containing Golgi bodies in developing xylem vessels (Wightman and Turner, 2008). In addition, it has been proposed that the AFs also can regulate the delivery of the secondary wall CesA complex to the PM via pausing of the Golgi (Wightman and Turner, 2008). It is therefore clear that actin organization is important for CesA distribution and for the pattern of cellulose microfibril deposition.Despite the above findings, very few reports have undertaken detailed studies to elucidate the role of the actin cytoskeleton in the distribution and trafficking of specific proteins in plant cells. Here, we have investigated the intracellular trafficking of CesA-containing vesicles and delivery of CesAs to the PM, in the context of the actin cytoskeleton. We quantitatively demonstrate that the organization of the actin cytoskeleton regulates CesA-containing Golgi distribution and the exocytic and endocytic rate of the CesAs. However, actin organization has no effect on the localized insertion of CesAs at sites of MTs at the PM.  相似文献   
7.
The dynamic behavior of the microtubule cytoskeleton plays a crucial role in cellular organization, but the physical mechanisms underlying microtubule (re)organization in plant cells are poorly understood. We investigated microtubule dynamics in tobacco BY-2 suspension cells during interphase and during the formation of the preprophase band (PPB), the cytoskeletal structure that defines the site of cytokinesis. Here we show that after 2 h of microtubule accumulation in the PPB and concurrent disappearance elsewhere in the cortex, the PPB is completed and starts to breakdown exponentially already 20 min before the onset of prometaphase. During formation of the PPB, the dynamic instability, i.e., the stochastic alternating between growing and shrinking phases, of the cortical microtubules outside the PPB increases significantly, but the microtubules do not become shorter. Based on this, as well as on the cross-linking of microtubules in the PPB and the lack of evidence for motor involvement, we propose a "search-and-capture" mechanism for PPB formation, in which the regulation of dynamic instability causes the cortical microtubules to become more dynamic and possibly longer, while the microtubule cross-linking activity of the developing PPB preferentially stabilizes these "searching" microtubules. Thus, microtubules gradually disappear from the cortex outside the PPB and aggregate to the forming PPB.  相似文献   
8.
Plant cells expand by exocytosis of wall material contained in Golgi-derived vesicles. We examined the role of local instability of the actin cytoskeleton in specifying the exocytosis site in Arabidopsis root hairs. During root hair growth, a specific actin cytoskeleton configuration is present in the cell's subapex, which consists of fine bundles of actin filaments that become more and more fine toward the apex, where they may be absent. Pulse application of low concentrations of the actin-depolymerizing drugs cytochalasin D and latrunculin A broadened growing root hair tips (i.e., they increased the area of cell expansion). Interestingly, recovery from cytochalasin D led to new growth in the original growth direction, whereas in the presence of oryzalin, a microtubule-depolymerizing drug, this direction was altered. Oryzalin alone, at the same concentration, had no influence on root hair elongation. These results represent an important step toward understanding the spatial and directional regulation of root hair growth.  相似文献   
9.
Globulins (GLB) are storage proteins that accumulate to high levels during zygotic embryo development of Zea mays L. We visualized the distribution of GLB during zygotic embryo development by immunolabelling of polyethylene glycol sections with a GLB-specific antiserum and a fluorescent secondary antibody. In sections of embryos at 10 days after pollimation (DAP), GLB were detected in the scutellar node only. Sections of embryos of 17 DAP showed, besides the presence of GLB in the scutellar node, the presence of a low amount of GLB in the coleoptile and the leaf primordia. In 30-DAP embryos GLB were localized in the root, the coleorhiza, the leaf primordia, the coleoptile and in all cells of the scutellum with the exception of the epidermis and the pro-vascular tissues. The subcellular location of GLB was visualized by immunolabelling of ultrathin sections with anti-GLB and a gold-conjugated secondary antibody. Scutellum cells and root cortex cells of 30-DAP embryos were packed with protein storage vacuoles (PSV), which differed in electron density. GLB were either evenly distributed throughout the PSV or were localized in electron-dense inclusions within the PSV. SDS-PAGE and immunoblot analysis of total protein extracts indicated the presence of a low amount of the GLB1 processing intermediate proGLB1' in globular as well as mature somatic embryos. After maturation on an ABA-containing medium, somatic embryos showed the additional presence of the next GLB1 processing intermediate GLB1'. By immuno-electron microscopy it was possible to localize GLB in globular deposits in PSV in scutellum cells of these somatic embryos.  相似文献   
10.
The fungus Pisolithus microcarpus establishes an ectomycorrhiza with Eucalyptus globulus. This symbiosis involves a fungal synthesis and secretion of hypaphorine, an indolic compound. Previous studies have shown that hypaphorine induces an alteration in the actin cytoskeleton of elongating root hairs and inhibits hair elongation. Using an alternative approved method, we analyzed the effects of hypaphorine on the E. globulus root hair cyto-architecture and actin configuration in more detail and provide new results. One mM hypaphorine stops root hair elongation within 20 min, and changes the hair cyto-architecture. Semi-quantitative analysis of the actin cytoskeleton before and after treatment with hypaphorine shows that hypaphorine induces a shift from fine F-actin to F-actin bundles in the sub-apex of the hair, which occurs first in the mid-plane of the cell. This creates a sub-apical cell centre free of filamentous actin, an actin configuration that differs from that during developmental growth arrest. The mechanism of action of hypaphorine is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号