首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7047篇
  免费   734篇
  国内免费   3篇
  2024年   9篇
  2023年   27篇
  2022年   32篇
  2021年   179篇
  2020年   83篇
  2019年   128篇
  2018年   159篇
  2017年   139篇
  2016年   204篇
  2015年   373篇
  2014年   389篇
  2013年   485篇
  2012年   645篇
  2011年   627篇
  2010年   406篇
  2009年   398篇
  2008年   488篇
  2007年   493篇
  2006年   445篇
  2005年   398篇
  2004年   408篇
  2003年   324篇
  2002年   295篇
  2001年   61篇
  2000年   36篇
  1999年   52篇
  1998年   74篇
  1997年   46篇
  1996年   33篇
  1995年   29篇
  1994年   30篇
  1993年   24篇
  1992年   23篇
  1991年   12篇
  1990年   22篇
  1989年   23篇
  1988年   16篇
  1987年   17篇
  1986年   14篇
  1985年   14篇
  1984年   20篇
  1983年   12篇
  1982年   15篇
  1981年   15篇
  1980年   4篇
  1979年   5篇
  1977年   7篇
  1974年   13篇
  1973年   5篇
  1967年   4篇
排序方式: 共有7784条查询结果,搜索用时 31 毫秒
1.
An in vitro photoautotrophic step based on the supply of CO2-enriched air (1,600 μmol mol?1) during the light phase and ambient air (350 μmol mol?1 CO2) during the dark phase has been used to promote the ex vitro establishment of coconut (Cocos nucifera L.) seedlings. The introduction of this step into a previously developed in vitro protocol was found to improve the quality of the seedlings (as assessed by fresh weight increase, physical stature, leaf area and thickness, stomatal density, and chlorophyll a content, and primary and secondary root production), the proportion of seedlings successfully transferred to soil (improvement from 40% to 100%) and achieved in a shorter time (reduction from 10 to 6 mo). Best results using this photoautotrophic growth step were obtained when a low medium concentration of sucrose (43.8 mM or lower) was used, when it was applied to seedlings that had already reached 4 or 5 mo of age in the in vitro culture step, and when seedlings were cultured in the photoautotrophic system for 2 mo or more before transfer to soil. Our improved protocol is more efficient and it reduces the cost per plant for the international exchange of coconut germplasm.  相似文献   
2.
  1. Urban areas are often considered to be a hostile environment for wildlife as they are highly fragmented and frequently disturbed. However, these same habitats can contain abundant resources, while lacking many common competitors and predators. The urban environment can have a direct impact on the species living there but can also have indirect effects on their parasites and pathogens. To date, relatively few studies have measured how fine‐scale spatial heterogeneity within urban landscapes can affect parasite transmission and persistence.
  2. Here, we surveyed 237 greenspaces across the urban environment of Edinburgh (UK) to investigate how fine‐scale variation in socio‐economic and ecological variables can affect red fox (Vulpes vulpes) marking behavior, gastrointestinal (GI) parasite prevalence, and parasite community diversity.
  3. We found that the presence and abundance of red fox fecal markings were nonuniformly distributed across greenspaces and instead were dependent on the ecological characteristics of a site. Specifically, common foraging areas were left largely unmarked, which indicates that suitable resting and denning sites may be limiting factor in urban environments. In addition, the amount of greenspace around each site was positively correlated with overall GI parasite prevalence, species richness, and diversity, highlighting the importance of greenspace (a commonly used measure of landscape connectivity) in determining the composition of the parasite community in urban areas.
  4. Our results suggest that fine‐scale variation within urban environments can be important for understanding the ecology of infectious diseases in urban wildlife and could have wider implication for the management of urban carnivores.
  相似文献   
3.
Cell division in fertilized sea urchin eggs was reversibly inhibited when the ketoaldehyde phenyl glyoxal (PG) at a concentration of 0.1 mM was added to eggs for ten minutes prior to the formation of the mitotic spindle. We investigated whether inhibition of mitosis was due to PG binding to the cell surface (as previously suggested by Stein and Berestecky, '74) or to some intracellular effect. When 14C-PG was added to eggs, label was readily taken up into the egg cytoplasm; very little label was associated with the egg surface. In the cytoplasm PG combined with equimolar amounts of reduced glutathione (GSH), decreasing the levels of cellular GSH to less than 15% of normal and accounting for at least 50% of the PG taken up by eggs. The concentrations of oxidized and protein-bound glutathione were unaffected by PG treatment. We showed that glyoxalase enzymes were present in sea urchin eggs and were capable of metabolizing the PG-GSH complex, thereby restoring GSH to normal levels after PG was removed from the sea water. Though some other effect of PG cannot be ruled out, the major fate of PG in eggs was to combine with GSH, and the transient decrease in GSH which resulted could lead to inhibition of mitosis. While other reports (Nath and Rebhun, '76; Oliver et al., '76) have shown that reagents which oxidize GSH disrupt microtubule-related events, our results showed that such inhibition could be caused by decreased GSH levels alone.  相似文献   
4.
5.
The human milk microbiome is vertically transmitted to offspring during the postnatal period and has emerged as a critical driver of infant immune and metabolic development. Despite this importance in humans, the milk microbiome of nonhuman primates remains largely unexplored. This dearth of comparative work precludes our ability to understand how species‐specific differences in the milk microbiome may differentially drive maternal effects and limits how translational models can be used to understand the role of vertically transmitted milk microbes in human development. Here, we present the first culture‐independent data on the milk microbiome of a nonhuman primate. We collected milk and matched fecal microbiome samples at early and late lactation from a cohort of captive lactating vervet monkeys (N = 15). We found that, similar to humans, the vervet monkey milk microbiome comprises a shared community of taxa that are universally present across individuals. However, unlike in humans, this shared community is dominated by the genera Lactobacillus, Bacteroides, and Prevotella. We also found that, in contrast to previous culture‐dependent studies in humans, the vervet milk microbiome exhibits greater alpha‐diversity than the gut microbiome across lactation. Finally, we did not find support for the translocation of microbes from the gut to the mammary gland within females (i.e., “entero‐mammary pathway”). Taken together, our results show that the vervet monkey milk microbiome is taxonomically diverse, distinct from the gut microbiome, and largely stable. These findings demonstrate that the milk microbiome is a unique substrate that may selectively favor the establishment and persistence of particular microbes across lactation and highlights the need for future experimental studies on the origin of microbes in milk.  相似文献   
6.
In Mytilus and Leucophaea the high-affinity binding site density is significantly lower in old animals than in young animals, whereas the low-affinity site density remains unchanged. In Mytilus the estimated met-enkephalin and met-enkephalin-Arg6-Phe7 levels are significantly higher in old than in young animals. In Leucophaea only the met-enkephalin level can be determined, and it is also higher in old animals. The decrease in the high-affinity binding site density and the corresponding increase in endogenous enkephalin levels suggest the existence of an opioid compensatory mechanism associated with the aging process. In Mytilus there is a demonstrated decrease with age in intraganglionic dopamine levels in response to applied opiates. In addition, the inhibition of dopamine-stimulated adenylate cyclase activity by opiates also decreases in older animals. In Leucophaea the sex difference in opioid binding densities diminishes with age.  相似文献   
7.
Recent advances in the fields of chromatography, mass spectrometry, and chemical analysis have greatly improved the efficiency with which carotenoids can be extracted and analyzed from avian plumage. Prior to these technological developments, Brush (1968) [1] concluded that the burgundy-colored plumage of the male pompadour Cotinga Xipholena punicea is produced by a combination of blue structural color and red carotenoids, including astaxanthin, canthaxanthin, isozeaxanthin, and a fourth unidentified, polar carotenoid. However, X. punicea does not in fact exhibit any structural coloration. This work aims to elucidate the carotenoid pigments of the burgundy color of X. punicea plumage using advanced analytical methodology. Feathers were collected from two burgundy male specimens and from a third aberrant orange-colored specimen. Pigments were extracted using a previously published technique (McGraw et al. (2005) [2]), separated by high-performance liquid chromatography (HPLC), and analyzed by UV/Vis absorption spectroscopy, chemical analysis, mass spectrometry, nuclear magnetic resonance (NMR), and comparison with direct synthetic products. Our investigation revealed the presence of eight ketocarotenoids, including astaxanthin and canthaxanthin as reported previously by Brush (1968) [1]. Six of the ketocarotenoids contained methoxyl groups, which is rare for naturally-occurring carotenoids and a novel finding in birds. Interestingly, the carotenoid composition was the same in both the burgundy and orange feathers, indicating that feather coloration in X. punicea is determined not only by the presence of carotenoids, but also by interactions between the bound carotenoid pigments and their protein environment in the barb rami and barbules. This paper presents the first evidence of metabolically-derived methoxy-carotenoids in birds.  相似文献   
8.
Nonlymphoid, stromal cells in the mouse thymus are believed to be important in T cell maturation and have been proposed to play a central role in the acquisition of major histocompatibility complex (MHC) restriction and self-tolerance by maturing thymocytes. Both cortical and medullary epithelial cells in the thymus express high levels of class II (A) major histocompatibility antigens (MHC Ags). We show here that a specific subset of these A epithelial cells express a transformation-associated antigen (6C3Ag) found previously on the surfaces of Abelson murine leukemia virus-transformed pre-B cells and on those bone marrow-derived stromal cell clones which support normal and preneoplastic pre-B cell proliferation. Among solid lymphoid organs, only the thymus contains 6C3Ag1 cells and within the thymus, this antigen is found exclusively on A epithelial cells in cortical regions. It is striking that the expression of the 6C3Ag on thymic epithelium is developmentally regulated, suggesting a role for this lymphostromal antigen in the maturation of the thymic microenvironment.  相似文献   
9.
Glycosphingolipids are a subgroup of glycolipids that contain an amino alcohol sphingoid base linked to sugars. They are found in the membranes of cells ranging from bacteria to vertebrates. This group of lipids is known to stimulate the immune system through activation of a type of white blood cell known as natural killer T cell (NKT cell). Here we summarize the extensive research that has been done to identify the structures of natural glycolipids that stimulate NKT cells and to determine how these antigens are recognized. We also review studies designed to understand how glycolipid variants, both natural and synthetic, can alter the responses of NKT cells, leading to dramatic changes in the global immune response.  相似文献   
10.
How morphology changes with size can have profound effects on the life history and ecology of an animal. For apex predators that can impact higher level ecosystem processes, such changes may have consequences for other species. Tiger sharks (Galeocerdo cuvier) are an apex predator in tropical seas, and, as adults, are highly migratory. However, little is known about ontogenetic changes in their body form, especially in relation to two aspects of shape that influence locomotion (caudal fin) and feeding (head shape). We captured digital images of the heads and caudal fins of live tiger sharks from Southern Florida and the Bahamas ranging in body size (hence age), and quantified shape of each using elliptical Fourier analysis. This revealed changes in the shape of the head and caudal fin of tiger sharks across ontogeny. Smaller juvenile tiger sharks show an asymmetrical tail with the dorsal (upper) lobe being substantially larger than the ventral (lower) lobe, and transition to more symmetrical tail in larger adults, although the upper lobe remains relatively larger in adults. The heads of juvenile tiger sharks are more conical, which transition to relatively broader heads over ontogeny. We interpret these changes as a result of two ecological transitions. First, adult tiger sharks can undertake extensive migrations and a more symmetrical tail could be more efficient for swimming longer distances, although we did not test this possibility. Second, adult tiger sharks expand their diet to consume larger and more diverse prey with age (turtles, mammals, and elasmobranchs), which requires substantially greater bite area and force to process. In contrast, juvenile tiger sharks consume smaller prey, such as fishes, crustaceans, and invertebrates. Our data reveal significant morphological shifts in an apex predator, which could have effects for other species that tiger sharks consume and interact with. J. Morphol. 277:556–564, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号