首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   266篇
  免费   25篇
  2023年   1篇
  2022年   8篇
  2021年   13篇
  2020年   6篇
  2019年   11篇
  2018年   7篇
  2017年   6篇
  2016年   16篇
  2015年   19篇
  2014年   13篇
  2013年   11篇
  2012年   27篇
  2011年   22篇
  2010年   12篇
  2009年   18篇
  2008年   7篇
  2007年   9篇
  2006年   10篇
  2005年   10篇
  2004年   13篇
  2003年   11篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1998年   5篇
  1997年   1篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
  1961年   1篇
  1958年   1篇
  1957年   1篇
  1950年   1篇
  1948年   1篇
  1910年   1篇
排序方式: 共有291条查询结果,搜索用时 15 毫秒
1.
2.
Histamine caused a triphasic response of human pulmonary artery strips in vitro, consisting of a small initial contraction followed by pronounced relaxation preceding a second contractile response. These characteristics were not seen with other contractile stimuli including 5-hdyroxytryptamine, leukotriene D4, and KC1. The relaxant component of this response was ablated by removal of endothelium from the vascular strips or by pretreatment of the tissues with 1μM indomethacin. Measurement of the PGI2 degradation product 6-keto-PGF in supernatants from histamine-challenged tissues confirmed the synthesis of PGI2. Supernatants from unstimulated or leukotriene-challenged tissues contained no detectable amounts of 6-keto-PGF. The histamine H1 antagonist diphenhydramine inhibited both the contractile and relaxant responses to histamine whereas the H2 antagonist cimetidine affected neither component. The released PGI2 significantly altered the dose-respons curve to histamine without inhibiting the maximal contractile responses. We conclude that histamine induces PGI2 formation from pulmonary arterial endothelium via an H1 receptor.  相似文献   
3.
Fibroblast growth factors (FGFs) are a family of nine proteins that bind to three distinct types of cell surface molecules: (i) FGF receptor tyrosine kinases (FGFR-1 through FGFR-4); (ii) a cysteine-rich FGF receptor (CFR); and (iii) heparan sulfate proteoglycans (HSPGs). Signaling by FGFs requires participation of at least two of these receptors: the FGFRs and HSPGs form a signaling complex. The length and sulfation pattern of the heparan sulfate chain determines both the activity of the signaling complex and, in part, the ligand specificity for FGFR-1. Thus, the heparan sulfate proteoglycans are likely to play an essential role in signaling. We have recently identified a role for FGF in limb bud development in vivo. In the chick limb bud, ectopic expression of the 18 kDa form of FGF-2 or FGF-2 fused to an artificial signal peptide at its amino terminus causes skeletal duplications. These data, and the observations that FGF-2 is localized to the subjacent mesoderm and the apical ectodermal ridge in the early developing limb, suggest that FGF-2 plays an important role in limb outgrowth. We propose that FGF-2 is an apical ectodermal ridgederived factor that participates in limb outgrowth and patterning. © 1994 Wiley-Liss, Inc.  相似文献   
4.
5.
6.
To bypass a diverse range of fork stalling impediments encountered during genome replication, cells possess a variety of DNA damage tolerance (DDT) mechanisms including translesion synthesis, template switching, and fork reversal. These pathways function to bypass obstacles and allow efficient DNA synthesis to be maintained. In addition, lagging strand obstacles can also be circumvented by downstream priming during Okazaki fragment generation, leaving gaps to be filled post-replication. Whether repriming occurs on the leading strand has been intensely debated over the past half-century. Early studies indicated that both DNA strands were synthesised discontinuously. Although later studies suggested that leading strand synthesis was continuous, leading to the preferred semi-discontinuous replication model. However, more recently it has been established that replicative primases can perform leading strand repriming in prokaryotes. An analogous fork restart mechanism has also been identified in most eukaryotes, which possess a specialist primase called PrimPol that conducts repriming downstream of stalling lesions and structures. PrimPol also plays a more general role in maintaining efficient fork progression. Here, we review and discuss the historical evidence and recent discoveries that substantiate repriming as an intrinsic replication restart pathway for maintaining efficient genome duplication across all domains of life.  相似文献   
7.
The third Heidelberg Unseminars in Bioinformatics (HUB) was held on 18th October 2012, at Heidelberg University, Germany. HUB brought together around 40 bioinformaticians from academia and industry to discuss the ‘Biggest Challenges in Bioinformatics’ in a ‘World Café’ style event.  相似文献   
8.
9.
10.
Autosomal Recessive Polycystic Kidney Disease (ARPKD) is a genetic disorder with an incidence of ~1:20,000 that manifests in a wide range of renal and liver disease severity in human patients and can lead to perinatal mortality. ARPKD is caused by mutations in PKHD1, which encodes the large membrane protein, Fibrocystin, required for normal branching morphogenesis of the ureteric bud during embryonic renal development. The variation in ARPKD phenotype suggests that in addition to PKHD1 mutations, other genes may play a role, acting as modifiers of disease severity. One such pathway involves non-canonical Wnt/Planar Cell Polarity (PCP) signalling that has been associated with other cystic kidney diseases, but has not been investigated in ARPKD. Analysis of the AtminGpg6 mouse showed kidney, liver and lung abnormalities, suggesting it as a novel mouse tool for the study of ARPKD. Further, modulation of Atmin affected Pkhd1 mRNA levels, altered non-canonical Wnt/PCP signalling and impacted cellular proliferation and adhesion, although Atmin does not bind directly to the C-terminus of Fibrocystin. Differences in ATMIN and VANGL2 expression were observed between normal human paediatric kidneys and age-matched ARPKD kidneys. Significant increases in ATMIN, WNT5A, VANGL2 and SCRIBBLE were seen in human ARPKD versus normal kidneys; no substantial differences were seen in DAAM2 or NPHP2. A striking increase in E-cadherin was also detected in ARPKD kidneys. This work indicates a novel role for non-canonical Wnt/PCP signalling in ARPKD and suggests ATMIN as a modulator of PKHD1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号