首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   407篇
  免费   51篇
  国内免费   1篇
  2023年   2篇
  2021年   15篇
  2020年   5篇
  2019年   12篇
  2018年   13篇
  2017年   12篇
  2016年   17篇
  2015年   34篇
  2014年   30篇
  2013年   33篇
  2012年   42篇
  2011年   41篇
  2010年   24篇
  2009年   24篇
  2008年   39篇
  2007年   26篇
  2006年   12篇
  2005年   19篇
  2004年   16篇
  2003年   6篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1994年   3篇
  1991年   3篇
  1989年   1篇
  1986年   2篇
  1985年   2篇
  1979年   3篇
  1977年   2篇
  1976年   2篇
  1971年   1篇
  1962年   1篇
  1940年   1篇
  1910年   1篇
排序方式: 共有459条查询结果,搜索用时 609 毫秒
1.
2.
Lysine acetylation, one of the major types of post-translational modifications, plays critical roles in regulating gene expression and protein function. Histone deacetylases(HDACs) are responsible for removing acetyl groups from lysines of both histone and non-histone proteins. While tremendous progress has been made in understanding the function and mechanism of HDACs in animals in the past two decades, nearly half of the HDAC studies in plants were reported within the past five years. In this review,we summarize the major findings on plant HDACs, with a focus on the model plant Arabidopsis thaliana, and highlight the components, regulatory mechanisms, and biological functions of HDAC complexes.  相似文献   
3.
A non-pigmented, unicellular alga isolated from the faeces of British anuran tadpoles and which is associated with growth inhibition in these tadpoles, was described and identified using cytological, ultrastructural, nutrient assimilation and immunological studies. The alga possessed all the distinctive morphological features of the genus Prototheca, it grew weakly on Prototheca Isolation Medium (PIM), it required thiamine for continued growth and replication, and it could assimilate the five major substrates used to speciate the protothecans. All of these characteristics, together with previous nucleic acid hybridisation studies, indicated that the microorganism belonged to the genus Prototheca. There are currently five species recognised as valid (Pore, 1985 & 1986): Prototheca zopfii Kruger, 1884, P. wickerhamii Tubaki & Soneda, 1959, P. moriformis Kruger, 1884, P. stagnora Cooke, 1968 and P. ulmea Pore, 1986.The immunology showed that the new species was related to two of the protothecans, but overall it showed that the alga was antigenically distinct from the other protothecans tested in the immunoassay. This, together with its inability to grow strongly on PIM, its ability to assimilate a wide rage of carbon substrates and its ability to mediate growth inhibition in anuran tadpoles, indicated a new species of Prototheca. We therefore propose the name Prototheca richardsi sp. n.  相似文献   
4.
In the pyrimidine biosynthetic pathway, CTP synthetase catalyses the conversion of uridine 5-triphosphate (UTP) to cytidine 5-triphosphate (CTP). In the yeast Saccharomyces cerevisiae, the URA7 gene encoding this enzyme was previously shown to be nonessential for cell viability. The present paper describes the selection of synthetic lethal mutants in the CTP biosynthetic pathway that led us to clone a second gene, named URA8, which also encodes a CTP synthetase. Comparison of the predicted amino acid sequences of the products of URA7 and URA8 shows 78% identity. Deletion of the URA8 gene is viable in a haploid strain but simultaneous presence of null alleles both URA7 and URA8 is lethal. Based on the codon bias values for the two genes and the intracellular concentrations of CTP in strains deleted for one of the two genes, relative to the wild-type level, URA7 appears to be the major gene for CTP biosynthesis. Nevertheless, URA8 alone also allows yeast growth, at least under standard laboratory conditions.  相似文献   
5.
Summary Three human melanoma cell lines derived from one primary and two metastatic tumors from three different patients were characterized for growth properties usually associated with malignant transformation; these include cell morphology, growth rate, saturation density, growth in semisolid media, colony-forming ability on contact-inhibited monolayers of normal fibroblasts and epithelial cells, and tumorigenicity in immunosuppressed mice. Variations in expression of aberrant properties were evident among the lines. One of the metastatic lines satisfied all the parameters of malignancy tested and the other showed a number of these properties, whereas the primary essentially fulfilled only one. These results suggest that cultured melanoma cells reflect the clinical variability often observed among melanoma patients and the metastatic melanoma seems to display a higher degree of malignant transformation than the primary. THis work was supported in part by USPHS Grant No. 5 T01 AI00332-06 from the National Institutes of Health, Contract E73-2001-N01-CP-3-3237 from the Virus Cancer Program of the National Cancer Institute, and USPHS Grant No. 0H00714-02 from the National Institute for Occupational Safety and Health.  相似文献   
6.
7.
Supernumerary mini-chromosomes–a unique type of genomic structural variation–have been implicated in the emergence of virulence traits in plant pathogenic fungi. However, the mechanisms that facilitate the emergence and maintenance of mini-chromosomes across fungi remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia oryzae), mini-chromosomes have been first described in the early 1990s but, until very recently, have been overlooked in genomic studies. Here we investigated structural variation in four isolates of the blast fungus M. oryzae from different grass hosts and analyzed the sequences of mini-chromosomes in the rice, foxtail millet and goosegrass isolates. The mini-chromosomes of these isolates turned out to be highly diverse with distinct sequence composition. They are enriched in repetitive elements and have lower gene density than core-chromosomes. We identified several virulence-related genes in the mini-chromosome of the rice isolate, including the virulence-related polyketide synthase Ace1 and two variants of the effector gene AVR-Pik. Macrosynteny analyses around these loci revealed structural rearrangements, including inter-chromosomal translocations between core- and mini-chromosomes. Our findings provide evidence that mini-chromosomes emerge from structural rearrangements and segmental duplication of core-chromosomes and might contribute to adaptive evolution of the blast fungus.  相似文献   
8.
The mitochondrion is crucial for ATP generation by oxidative phosphorylation, among other processes. Cristae are invaginations of the mitochondrial inner membrane that house nearly all the macromolecular complexes that perform oxidative phosphorylation. The unicellular parasite Trypanosoma brucei undergoes during its life cycle extensive remodeling of its single mitochondrion, which reflects major changes in its energy metabolism. While the bloodstream form (BSF) generates ATP exclusively by substrate-level phosphorylation and has a morphologically highly reduced mitochondrion, the insect-dwelling procyclic form (PCF) performs oxidative phosphorylation and has an expanded and reticulated organelle. Here, we have performed high-resolution 3D reconstruction of BSF and PCF mitochondria, with a particular focus on their cristae. By measuring the volumes and surface areas of these structures in complete or nearly complete cells, we have found that mitochondrial cristae are more prominent in BSF than previously thought and their biogenesis seems to be maintained during the cell cycle. Furthermore, PCF cristae exhibit a surprising range of volumes in situ, implying that each crista is acting as an independent bioenergetic unit. Cristae appear to be particularly enriched in the region of the organelle between the nucleus and kinetoplast, the mitochondrial genome, suggesting this part has distinctive properties.  相似文献   
9.
Activation of the NFκB signaling pathway allows the cell to respond to infection and stress and can affect many cellular processes. As a consequence, NFκB activity must be integrated with a wide variety of parallel signaling pathways. One mechanism through which NFκB can exert widespread effects is through controlling the expression of key regulatory kinases. Here we report that NFκB regulates the expression of genes required for centrosome duplication, and that Polo-like kinase 4 (PLK4) is a direct NFκB target gene. RNA interference, chromatin immunoprecipitation, and analysis of the PLK4 promoter in a luciferase reporter assay revealed that all NFκB subunits participate in its regulation. Moreover, we demonstrate that NFκB regulation of PLK4 expression is seen in multiple cell types. Significantly long-term deletion of the NFκB2 (p100/p52) subunit leads to defects in centrosome structure. This data reveals a new component of cell cycle regulation by NFκB and suggests a mechanism through which deregulated NFκB activity in cancer can lead to increased genomic instability and uncontrolled proliferation.  相似文献   
10.
The Golgi apparatus is an intracellular compartment necessary for post-translational modification, sorting and transport of proteins. It plays a key role in mitotic entry through the Golgi mitotic checkpoint. In order to identify new proteins involved in the Golgi mitotic checkpoint, we combine the results of a knockdown screen for mitotic phenotypes and a localization screen. Using this approach, we identify a new Golgi protein C11ORF24 (NP_071733.1). We show that C11ORF24 has a signal peptide at the N-terminus and a transmembrane domain in the C-terminal region. C11ORF24 is localized on the Golgi apparatus and on the trans-Golgi network. A large part of the protein is present in the lumen of the Golgi apparatus whereas only a short tail extends into the cytosol. This cytosolic tail is well conserved in evolution. By FRAP experiments we show that the dynamics of C11ORF24 in the Golgi membrane are coherent with the presence of a transmembrane domain in the protein. C11ORF24 is not only present on the Golgi apparatus but also cycles to the plasma membrane via endosomes in a pH sensitive manner. Moreover, via video-microscopy studies we show that C11ORF24 is found on transport intermediates and is colocalized with the small GTPase RAB6, a GTPase involved in anterograde transport from the Golgi to the plasma membrane. Knocking down C11ORF24 does not lead to a mitotic phenotype or an intracellular transport defect in our hands. All together, these data suggest that C11ORF24 is present on the Golgi apparatus, transported to the plasma membrane and cycles back through the endosomes by way of RAB6 positive carriers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号