首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   5篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2012年   1篇
排序方式: 共有5条查询结果,搜索用时 182 毫秒
1
1.
淮河流域蒸散发时空变化与归因分析   总被引:1,自引:0,他引:1  
翁升恒  张方敏  卢燕宇  段春锋  倪婷 《生态学报》2022,42(16):6718-6730
蒸散发(Evapotranspiration,ET)是联结土壤-植被-大气过程的纽带,对理解地表水热平衡至关重要。因此,量化分析ET时空变化特征、揭示其主要控制因子对区域用水管理和农业生产十分重要。利用遥感数据和气象数据,基于BEPS模型估算了1981-2019年的淮河流域ET,分析了该区域ET时空分布特征,并通过敏感度系数和贡献率方法对该区域的ET多年变化特征进行了归因分析,最后借助数值实验方法深入探究影响特湿润年(2003年)ET较低的主要原因。结果表明:(1)1981-2019年淮河流域多年平均ET为549.83 mm,其中夏季ET占全年ET的比值达到47.63%;1981年以来区域ET整体呈极显著上升趋势(4.41 mm/a,P<0.01);季节上,除冬季外,其他三个季节的ET增幅均呈显著性增加(P<0.05),四季增幅速率大小依次为:夏季>春季>秋季>冬季;空间上,中东部和南部ET较高,重心模型显示ET高值区域呈显著的由北向南的移动趋势;(2)归因分析结果表明,淮河流域ET对气温变化最敏感,其次为相对湿度、太阳总辐射、叶面积指数(LAI)和降水,但ET对LAI的正敏感性逐渐增强导致LAI的显著升高对流域ET年际变化贡献最大(44.5%),其次是气温的升高(25.93%);同时,LAI是春、夏、秋三季ET变化的主导因素,气温是冬季ET变化的主导因素;(3)数值实验显示高相对湿度是引起特湿润年(2003年)ET明显偏低的最主要因素,这与导致长时间序列ET变化的原因不同。因此,建议今后加强极端气候条件下ET变化的归因分析,为更有效地应对全球气候变化提供决策服务。研究结果能够为认识淮河流域环境变化对水循环影响及合理分配区域水资源提供科学参考。  相似文献   
2.
基于主成分分析的安徽省冬小麦气候灾损风险的时空演变   总被引:1,自引:0,他引:1  
冬小麦是安徽省主要粮食作物之一,分析其气候灾损风险变化对保障区域粮食安全有着重要意义。依托安徽省74个区县1973—2014年间的冬小麦单产资料,通过气候减产率逐年序列提取了减产年次数、平均减产率、减产极值等9个评价指标,并采用主成分分析法分析安徽省冬小麦灾损风险的时空演变格局。结果表明: 研究期间,安徽省北部特别是沿淮地区为冬小麦气候灾损高风险区域;重心迁移模型显示,安徽省冬小麦气候减产率高值区域由北向南呈显著的移动趋势;全省冬小麦气候灾损风险呈显著的年代际变化,特别是21世纪初以来发生中度以上灾损强度的区县个数明显较少;S-模式主成分分析和气候减产率序列表明,1973—2014年间,安徽省北部地区冬小麦气候灾损风险呈下降趋势,南部地区呈上升趋势。安徽省冬小麦气候灾损风险呈现出明显的时空动态特征,其年代际波动和南北区域差异应引起重视。  相似文献   
3.
利用美国环境预测中心的再分析气象资料和由GIMMS NDVI 资料生成的叶面积指数对BEPS生态模型进行驱动,模拟分析了2000-2005年亚洲东部地区总初级生产力(GPP)和总净初级生产力(NPP)的时空变化特征.在进行区域模拟计算前,使用15个站点不同生态系统的GPP观测数据及1300个样点的NPP观测数据对模型进行验证.结果表明: BEPS模型能较好地模拟不同生态系统的GPP和NPP变化,模拟的GPP与观测数据之间的R2为0.86~0.99,均方根误差(RMSE)为0.2~1.2 g C·m-2·d-1;BEPS模拟值能够解释78%的年NPP变化,其RMSE为118 g C·m-2·a-1.2000-2005年,亚洲东部地区GPP和NPP总量平均值分别为21.7和10.5 Pg C·a-1.NPP和GPP具有相似的时空变化特征.研究期间,NPP总量的变化范围为10.2~10.7 Pg C·a-1, 变异系数为2.2%.NPP由东南向西北显著减少,高值区〖JP2〗(>1000 g C·m-2·a-1)出现在东南亚海岛国家,我国的西北干旱沙漠地区为低值区(<30 g C·m-2·a-1),〖JP〗其空间格局主要由气候因子决定.不同国家的人均NPP差异很大,其中,蒙古最高,达70217 kg C·a-1,远高于中国的人均NPP(1921 kg C·a-1),印度的人均NPP最小,为757 kg C·a-1.  相似文献   
4.
华朗钦  张方敏  翁升恒  卢燕宇 《生态学报》2023,43(17):7237-7251
净生态系统生产力(NEP)是定量描述陆地生态系统与大气之间碳交换的重要指标。明确区域尺度NEP的时空格局及主导因子,有助于增强对区域碳循环变化机制的认知。基于BEPS (Boreal Ecosystem Productivity Simulator)模型模拟结果,评估了安徽省1982-2020年NEP时空格局,分析了安徽省NEP对主要环境植被因子的敏感性,并借助通径分析和贡献率分析探究了影响安徽省NEP时空变化的驱动因子。结果表明:(1)1982-2020年,安徽省多年年均NEP为651.14 gC/m2,线性趋势变化率为1.10 gC m-2 a-1,总体呈显著增加趋势(P<0.01)。在空间上,NEP表现为"南北部较高、中部较低"的分布,显著增加(P<0.05)的区域占52.77%,主要分布在北部和南部,显著减小(P<0.05)的区域占7.11%,主要分布在西部和东南部。NEP重心有显著的北移趋势(P<0.01)。(2) NEP对大气CO2浓度变化最为敏感,对降水变化最不敏感。时间上,NEP对叶面积指数(LAI)(P<0.01)、CO2P<0.01)和饱和水汽压差(VPD)(P<0.05)的敏感性变化显著增强,对总辐射的敏感性变化显著减弱(P<0.01),对气温和降水的敏感性变化不显著(P>0.05)。空间上,NEP对各因子的敏感性有地区差异性。(3)所选环境植被因子综合解释了NEP 79%的时空变化。LAI与CO2是安徽省NEP时空变化的主导因子,为正贡献,气候因子为次主导因子,为负贡献。空间上,LAI为主导因子的地区主要分布在安徽省北部、中西部的大部分地区,占49.65%,CO2为主导因子的地区主要分布在安徽省西北部与东南部的大部分地区,占44.54%。  相似文献   
5.
为了探寻遥感观测面尺度与作物模型模拟点尺度不匹配问题的解决方案并改善区域作物生长模拟精度,以河南省鹤壁市为研究区,以冬小麦为研究对象,基于MODIS、Landsat 8遥感数据和Wheat SM作物生长模型,通过MODIS LAI过程线重建、亚像元尺度信息提取、集合卡尔曼滤波同化等方法,进行了冬小麦生长模拟的研究。结果表明:通过MODIS LAI过程线重建并提取亚像元尺度信息,冬小麦纯度在80%以上的遥感反演LAI与冬小麦两个关键生育期实测冠层LAI的均方根误差(RMSE)为0.69,以最近邻域法赋值到整个模拟区域,研究区2013—2017年模拟总产和实际总产相比的RMSE在未同化遥感反演的LAI信息时为6.73×108kg,同化未利用亚像元尺度信息调整的遥感估算LAI时,RMSE上升到8.24×108kg,同化利用亚像元尺度信息分区赋值的遥感LAI时,RMSE下降到3.48×108kg。利用亚像元尺度信息生成与作物模型时空尺度匹配的格点化LAI遥感产品,可提高作物生长模型区域化应用的精度。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号