首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   1篇
  国内免费   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1976年   1篇
排序方式: 共有54条查询结果,搜索用时 31 毫秒
1.
The resistance characteristics of the apple resistance genes (Er1, Er2, and Er3) to the woolly apple aphid, Eriosoma lanigerum (Hausmann) (Homoptera: Aphididae) were studied according to the performance measured on apple cultivars containing these resistance genes. The resistance characteristics of Northern Spy (Er1), Robusta 5 (Er2), and Aotea (Er3) were compared to the susceptible cultivar Royal Gala, by measuring the aphid settlement, development, and survival rates correlated with electronically monitored probing behaviour. Er1 and Er2 had a higher level of resistance with a significantly shorter period of phloem feeding, suggesting that the resistance factors were present in the phloem tissue. Phenological measurements indicated that the aphids showed poor settlement, development, and survival on Er2. Er1 also showed low settlement and survival, although not as low as Er2. Aphid performance and feeding on Aotea (Er3) were similar to Royal Gala, suggesting that some woolly apple aphids in New Zealand may have recently overcome Er3 resistance. The differences in resistance mechanisms of Er1, Er2, and Er3 are discussed in relation to the strategy of pyramiding these genes to give a durable resistance to woolly apple aphid.  相似文献   
2.
Free and conjugated IAA levels were determined in wood, bark and cambial sap of M.9, M.26 and MM.106 apple rootstock genotypes differing in growth vigour. The measurements were done on May 15th, June 15th and July 15th. The level of free IAA in bark and wood of the tested trees varied from 27.0 to 52.7 ng·g−1 f.w. while the conjugated hormone content averaged 3–5 times higher. In the bark and wood samples, the differences in auxin content between rootstock genotypes and the time of stem harvesting were insignificant. The level of free IAA in cambial sap was on average 10 to 20 times higher than in both bark and wood tissues, while the conjugated hormone level varied from none (below detection limit) to 37 ng·g−1 f.w. Content of free IAA level in cambial sap from dwarf M.9 rootstock was significantly lower than that in either of the more vigorous genotypes. In both vigorous rootstocks IAA level in cambial sap remained at a similar level at all sampling dates but M.9 cambial sap showed a trend towards decreasing auxin content later in the growing season.  相似文献   
3.
Genetic variation in natural populations of Citrus tristeza virus (CTV) was studied using haplotypes detected by single-strand conformation polymorphism (SSCP) analysis of two genomic regions (p20 gene and segment A, located in ORF1a). Analysis of 254 samples from 125 trees, collected at 12 different sites, yielded 8 different haplotypes for p20 and 5 for segment A. The most frequent haplotype of p20 was predominant at all sites, but several sites differed in the predominance of segment A haplotypes. At most sites, the homozygosity observed for the p20 gene tended to be higher than expected in a neutral evolution, whereas the opposite was true for segment A. Comparison of the populations at different sites showed that 44 of the 66 possible population pairs were genetically distinct for segment A, but only six pairs differed for the p20 gene. Analysis of molecular variance grouping trees by site, scion variety, rootstock or age, showed that variation in segment A was significantly affected by site, tree age and rootstock, and that variation between trees in each group and within trees was even more important. In contrast, variation in p20 was affected only by site and rootstock, each factor contributing to < 2% of the variation. The data suggest that sequence variations in segment A must be functionally less important and that it has less evolutionary constraints than p20. Detection of different haplotypes in neighbour trees or in samples from the same tree may help explain part of the variability observed in CTV symptom expression.  相似文献   
4.
Summary Mesophyll protoplasts of wild pear (Pyrus communis var. pyraster L., Pomoideae) were chemically fused with cell suspension protoplasts of cherry rootstock Colt (Prunus avium x pseudocerasus, Prunoideae), following an electroporation treatment of the separate parental protoplast systems. Fusion-treated protoplasts were cultured, on modified K8P medium, where it had been previously established that neither parental protoplasts were capable of division. Somatic hybrid calli were recovered and, following caulogenesis on MS medium with zeatin and after rooting of regenerated shoots, complete trees were obtained and grown in vivo. Hybridity of these trees was confirmed based on morphological characters, chromosome complement and isozyme analysis. Two separate cloned lines of this intersubfamilial rootstock somatic hybrid (wild pear (+) Colt cherry) were produced. This is the first report of the production of somatic hybrid plants of two woody species, of agronomic value, within the order Rosales.  相似文献   
5.
Shoot tips of M.4 apple clone were excised from actively growing one year-old stoolbed branches, and cultured in order to determine the optimal nutrient medium for each stage of their in vitro culture. The basal medium (BM) used was that described by Murashige and Skoog, supplemented with vitamins, glycine, myoinositol, sucrose, with or without agar, and different combinations of plant growth regulators. Best media for each stage were: BM+0.5 mg 1-1 indole-3yl-butyric acid (IBA)+0.5 mg 1-1 6-benzylaminopurine (BAP) for explant establishment (Stage I); BM+0.1 mg 1-1 IBA+1.0 mg 1-1 BAP for multiplication and internode enlargement (Stage II); and 2.0 mg 1-1 IBA+0.1 mg 1-1 BAP without agar for the rooting of the plantlets (Stage III).  相似文献   
6.
Callus formation from stem internodes of the apple rootstocks M.9, M.25, M.26, M.27 and the cherry rootstock Colt, and from pith of Nicotiana tabacum cv. Wisconsin 38 was initiated on 4 -naphthaleneacetic acid (NAA)-based media (2.0–10.0 mg1-1). Transfer of callus to corresponding media lacking NAA allowed regeneration of shoots from callus of M.25, M.27, Colt and tobacco but not of M.9 and M.26. With M.25 phloroglucinol (PG) depressed regeneration from 30 to 10% and no regeneration was observed in cultures grown in the presence of casein hydrolysate (CH) and glutathione (GSH).Organogenesis was also obtained from leaf discs of M.27 employing 6-benzyl-aminopurine (BAP) at 5.0mg 1-1 and 2,4-dichlorophenoxy acetic acid (2,4-D) at 0.1 mg1-1. The regenerated shoots have been multiplied and rooted.Organogenesis also occurred in M.26 from small (1–2mm), green, compact embryoid-like structures derived from stem and leaf surfaces of excised axillary shoots. These structures differentiated into shoots at a low frequency (< 1%) on media containing BAP (1.0mg1-1) and indole-3-butyric acid (IBA) (0.1 mg1-1) and could also be micropropagated by subsequent axillary shoot proliferation.  相似文献   
7.
Experiments were carried out to evaluate the effects of 4/2 light-dark cycles (4 h of light followed by 2 h of dark) on the rooting responses of shoots cultivated in vitro of the fruit tree rootstocks GF 677 (peach × almond hybrid), Mr.S. 2/5 (Prunus cerasifera), MM 106 (apple Nothern Spy × Paradise M1) and BA 29 (Cydonia oblonga). Under this light regime rooting percentage of GF 677, Mr.S. 2/5 and MM 106 shoots reached 100 % as in the control treatment (16/8), while in BA 29 shoots, short light-dark cycles increased rooting response by about 65 %. Moreover, the shoots of all rootstocks submitted to the 4/2 cycle showed an appreciable increase in root number and length, and an earlier root emergence of about 4 – 5 d compared to the 16/8 cycle. Finally, rooting percentage of BA 29 shoots submitted to the 4/2 light regime and treated with 0.2 mg dm−3 indolebutyric acid (IBA), was equal to that reported with 0.4 mg dm−3 IBA under the 16/8 regime, indicating that the former light regime also amplified the rhizogenic effect of auxin.  相似文献   
8.
The root-lesion nematodes are important pests attacking stone and pome fruit crops throughout the world. They play an important role in the development of orchard replant problems. Host resistance toPratylenchus vulnus, the nematode of concern in mediterranean environments, has been difficult to find, and even more, to transmit into commercial rootstocks. Alternative management measures using early mycorrhizal infection that would confer protection against the nematode at a stage when plants are most vulnerable are currently being explored. These measures are considered important, taking into account a widespread change towards production systems that use in vitro material propagated in treated substrates free of mycorrhizal and other beneficial microorganisms. The prophylactic effect against root-lesion nematodes would be linked to mycorrhizal dependency of the host plant. Increase in tolerance would seem to be related to mycorrhiza assisted nutrition rather than to a direct suppressive effect of AM over the root-lesion nematode. InCitrus, Prunus, Malus andCydonia rootstocks, the nematode has shown to have a negative effect over AM colonization in the root.  相似文献   
9.
The inheritance of salt exclusion in woody perennial fruit species   总被引:4,自引:0,他引:4  
S. R. Sykes 《Plant and Soil》1992,146(1-2):123-129
Citrus and grapevines are salt-sensitive perennial crops. Damage caused by salinity is due mostly to accumulation of excessive concentrations of salt (Na- and Cl ions) in shoot tissues. In both crops, however, some rootstock varieties can restrict the accumulation of salt in scion leaves and stems. Salt-excluding rootstocks, however, are often deficient with regard to other desirable characteristics and as such their use is limited. As a consequence, we have conducted a range of crosses within both crops to select new salt-excluding hybrids which may have potential as new rootstocks and also to investigate the inheritance of salt exclusion in these woody perennials.In citrus, both Cl-ion and Na-ion exclusion has been observed as a continuous character and progenies segregate widely for their ability to restrict the accumulation of these ions in shoot tissues. The ability to exclude Cl ions appears to be independent of the ability to exclude Na ions. Thus a good Cl-ion excluder is not necessarily a good Na-ion excluder and vice versa. It has been possible, however, to select new salt-excluding citrus hybrids which perform as well as and sometimes better than parent varieties when grafted with a common scion and grown in artificially salinised field plots.In grapevines, the research has concentrated on the ability for Cl-ion exclusion and depending on the Cl-ion-excluding parent chosen this is inherited as either a polygenic or monogenic trait. In crosses between Vitis champini (Cl-ion excluder) and Vitis vinifera (Cl-ion accumulator), the ability to restrict Cl-ion accumulation in shoot tissues segregates widely with some offspring transgressing the performance of either parent. In crosses and backcrosses involving V. berlandieri and V. vinifera, however, hybrids segregate as either Cl-ion excluders or accumulators suggesting the effect of a major dominant gene for Cl-ion exclusion from V. berlandieri. This was evident from both field and glasshouse experiments although possible modifying genes from V. vinifera may affect the expression of this gene under glasshouse conditions in some crosses.  相似文献   
10.
The aim of this work was to investigate whether Fe reduction and antioxidant mechanisms were expressed differently in five Prunus rootstocks (‘Peach seedling,’ ‘Barrier,’ ‘Cadaman,’ ‘Saint Julien 655/2’ and ‘GF-677’). These rootstocks differ in their tolerance to Fe deficiency when grown in the absence of Fe (−Fe) or in presence of bicarbonate (supplied as 5 or 10 mM NaHCO3). Fe deficiency conditions, especially bicarbonate, were shown to decrease Fe and total chlorophyll (CHL) concentration. In the (−Fe)-treated roots of all rootstocks and in the 5 mM NaHCO3-treated ones of the tolerant ‘GF-677’ the Fe(III)-chelate reductase (FCR) activity was stimulated. On the contrary, apart from the ‘GF-677,’ FCR activity was greatly inhibited by the 10 mM NaHCO3. From the results obtained with decapitated rootstocks, it is not entirely clear whether or not the presence of shoot apex was a prerequisite to induce FCR function in all rootstocks tested. In the leaves of rootstocks exposed to the (−Fe) treatment, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities were enhanced whereas the levels of the non-enzymatic antioxidants (FRAP values) were increased in the Fe-deprived leaves, irrespective of the rootstock. Except for ‘Peach seedling,’ foliar SOD activity was stimulated by the presence of NaHCO3. Furthermore, POD activity was increased in the ‘Saint Julien 655/2’ and ‘GF-677,’ but was depressed in the ‘Barrier’ rootstocks exposed to 10 mM NaHCO3. As a result of 10 mM NaHCO3, the expression of a Cu/Zn-SOD and a POD isoform was diminished in the leaves of ‘Peach seedling’ and ‘Barrier,’ respectively. By contrast, an additional isoform of both POD and Mn–SOD were expressed in the leaves of ‘GF-677’ exposed to 10 mM NaHCO3 suggesting that the tolerance of rootstocks to Fe deficiency is associated with induction of an antioxidant defense mechanism. Although CAT activity was increased in the 5 mM NaHCO3-treated leaves of ‘GF-677,’ specifically the 10 mM NaHCO3 treatment resulted in a decrease of CAT activity and an accumulation of H2O2, indicating that bicarbonate-induced Fe deficiency may cause more severe oxidative stress in the rootstocks, than the absence of Fe. A general link between Fe deficiency-induced oxidative stress and Fe reduction-sensing mechanism is also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号