首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of Sorus Formation by Auxin in Laminariales Sporophyte   总被引:2,自引:0,他引:2  
Young sporophytes of Laminaria japonica Areshoug were cultured in six indole-acetic acid (IAA) concentrations (0, 10−8, 10−7, 10−6, 10−5, 10−4 M) to examine the effect of auxin on growth. The effects of auxin on sorus formation were also examined by using discs taken from the adult sporophyte. The auxin contents and IAA oxidase activities in the thallus and sorus parts of the sporophyte were determined with the blade and sporophyll of other Laminariales plants, Undaria pinnatifida (Harvey) Suringar and Alaria crassifolia Kjellman. The young sporophytes of L. japonica showed highest elongation rate in 10−5 M IAA. In contrast, the sorus formation on the discs cultured in 10−5 M IAA was markedly delayed in comparison with other concentrations, indicating that sorus formation was suppressed by IAA. Free and conjugated auxin contents were lower in the reproductive parts than in the vegetative parts. In three Laminariales sporophytes, IAA oxidase activity was about 3–9 times higher in the reproductive parts than in the vegetative parts. Taken together these results suggest that the growth and reproduction of Laminariales sporophytes are regulated by internal auxin levels. Elucidating the regulation mechanism is likely to provide information that is important for the management of plant production and the assessment of the physiological status of plants in the field.  相似文献   

2.
The dose-response curves for IAA and 4-Cl-IAA-induced growth of Zea mays L. coleoptile segments were studied as a function of time. Moreover, some characteristic growth parameters for both auxins were compared. The dose-response curve of growth rate measured after IAA or 4-Cl-IAA application was bell-shaped in all experiments. The optimum concentration was 10−6 M for 4-Cl-IAA and was found not to depend on the time of the growth measurement. However, in the case of IAA the optimum shifted from 10−6 M at the time of maximal growth rate to 10−5 M or even 10−4 M, when growth measured 3–4 hours after auxin application was analysed. The relative activity of 4-Cl-IAA-induced growth rate (as compared to IAA) increased significantly with increasing time from addition of this auxin to the medium. For both auxins the time needed to reach the maximal growth rate was clearly related to their concentrations. These data provided further evidence that 4-Cl-IAA is much more active auxin than IAA and can also suggest that IAA is more rapidly metabolized in comparison to 4-Cl-IAA.  相似文献   

3.
A microtechnique was developed for the quantification of indole-3-acetic acid (IAA) in plant samples of one milligram fresh weight or less. The method permitted quantification of both free and conjugated IAA using a benchtop gas chromatograph-mass spectrometer. New methods for sample purification with high recovery at microscale levels, together with simple changes that result in enhanced sensitivity of the instrumentation, allowed for a significant reduction in the amount of plant material required for analysis. Single oat (Avena sativa L.) coleoptile tips could be studied with this method and were found to contain free and total IAA levels of 137 and 399 pg · mg−1 fresh weight, respectively. A single 5-d-old Arabidopsis thaliana (L.) Heynh. seedling was shown to contain 61 pg · mg−1 fresh weight free IAA and 7850 pg · mg−1 fresh weight of total IAA following basic hydrolysis. This microtechnique provides a way to accurately measure IAA levels in very small structures and individual seedlings, thus making it a valuable research tool for elucidating the role and distribution of auxin in relation to growth and development. Received: 1 May 1994 / Accepted: 25 June 1997  相似文献   

4.
Cotyledons ofXanthium strumarium, organs with low sensitivity to photoperiodic treatment show a higher free indol-3-ylacetic acid level (by about 35 %) than the first pair leaves, organs with high sensitivity to photoperiodic treatment. This was seen in plants of three different age groups : A. with the first pair of leaves of 15–20 mm in length; B. with the first pair of leaves having finished their growth and C. with the third leaf of 30–40 mm in length. Changes in free IAA level during the inductive dark period were similar in both cotyledons and leaves of the first pair. The level of IAA rose in the first half of the dark period, began to decrease in the latter half, reaching nearly initial level at its end. Application of IAA (10−4 – 10−2M) to the cotyledons reduced their already low photoperiodic sensitivity resulting in inhibition of flowering (almost 70 % using 10−4M IAA). Elevated free IAA level is assumed to be one of the causal factors of low photoperiodic sensitivity of cotyledons.  相似文献   

5.
Concentrations of abscisic acid and indole-3-acetic acid were measured by GC-MS-SIM in the shoot bark of clonal apple rootstocks (M.27, M.9, MM.106 and MM.111) when the rootstocks were growing actively in the UK. These rootstocks are known to exhibit a wide range of control of tree size when grafted to a common scion. Shoot bark of the dwarfing rootstocks (M.27 and M.9) contained higher concentrations than the more vigorous rootstocks (MM.106 and MM.111) of ABA. Concentrations of ABA increased from May to July, followed by a decline in August. Only the month of sampling showed any significant influence on the concentration of IAA in shoot bark; however, there was a general increase, although not significant statistically, in IAA concentration with the increasing invigoration-capacity of the rootstock. At each sampling date the dwarfing rootstocks showed greater ratios of ABA:IAA than the invigorating rootstocks and generally the ratio for each rootstock increased from May to July, except for M.27 which showed the smallest ratio in June and the largest ratio in August. The results are discussed in relation to the generally accepted control exerted by the rootstocks on tree size and the possible influence of ABA on polar auxin transport.  相似文献   

6.
Summary The current notion that hormonal level and cell response are clearly correlated has often been challenged recently. During the period of cambial activity, auxin content seems to control the intensity of mitosis and some features of the resulting wood, but not the duration of the active period itself. During cambial rest, the indole-3-acetic acid (IAA) level often remains high in the cambium, but the cell sensitivity to auxin is low. The decrease of auxin transport in autumn is sometimes interpreted as a major qualitative change affecting the pattern of transport, and sometimes as a secondary change occurring later than rest onset. The causes of the seasonal variation of cambial response remain unknown. A hypothesis is proposed that accounts for the structural-functional changes occurring in cambial cells during the onset of dormancy. Abscisic acid (ABA) may reduce wood production and xylem cell enlargement in late summer. An important amount of ABA may be present in the cambial zone in autumn after drought stress and in spring in the young growing shoot. Changes in ABA level do not appear to be clearly correlated with the different steps of cambial rest and activity. Beyond the role of ABA as a stress mediator, its participation in the annual regulation of cambial activity remains unclear. Its distribution in the most alkaline compartments may account for the particularities of its seasonal activity. The involvement of IAA and ABA in cambial growth is discussed within the scope of a possible annual alternation of two different metabolisms in the cambial cell.Abbreviations ABA abscisic acid - DPA dihydrophaseic acid - GA gibberellic acid - GC-MS gas chromatography-mass spectrometry - IAA indole-3-acetic acid - PA phaseic acid - RNA ribonucleic acid - SICM single ion current monitoring - SIM selected ion monitoring  相似文献   

7.
Nishimura T  Mori Y  Furukawa T  Kadota A  Koshiba T 《Planta》2006,224(6):1427-1435
When maize coleoptiles were unilaterally exposed to red light (7.9 μmol m−2s−1 for 5 min), 3 h after treatment IAA levels in coleoptiles decreased in all regions, from top to basal, with levels about 60% of dark controls. Localized irradiation in the 5 mm top zone was sufficient to cause the same extent of IAA reduction in the tips to that in the tips of whole irradiated shoots. When coleoptiles were treated with N-1-naphthylphthalamic acid (NPA), an accumulation of IAA in the tip and a decrease of diffusible IAA from tips were simultaneously detected. IAA accumulation in red-light treated coleoptiles by NPA was much lower than that of dark controls. NPA treatment did not affect the content of conjugated IAA in either dark or light treated coleoptile tips. When 13C11 15N2-tryptophan (Trp) was applied to the top of coleoptiles, substantial amounts of stable isotope were incorporated into free IAA in dark and red-light treated coleoptile tips. The ratio of incorporation was slightly lower in red-light treated coleoptile tips than that in dark controls. The label could not be detected in conjugated IAA. The rate of basipetal transport of IAA was about 10 mm h−1 and the velocity was not affected by red light. These results strongly suggest that red light does not affect the rates of conversion of free IAA to the conjugate form or of the basipetal transport, but just reduces the IAA level in the tips, probably inhibited by IAA biosynthesis from Trp in this region.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

8.
In order to elucidate the physiological mechanism of maize mesocotyl elongation induced by auxin under different seeding depths, seeds of five maize inbred lines, including 3681-4 line tolerant to deep seeding, were treated with IAA and triiodobenzoic acid (TIBA) under seeding depths of 20 or 2 cm. Under deep seeding conditions, maize mesocotyls grew by 1.5–2.0 times faster than under shallow seeding conditions. IAA (10−6 to 10−4 M) applied to roots stimulated mesocotyl elongation only of 3681-4 line and only under deep seeding conditions. TIBA (10−5 and 10−4 M) applied to roots inhibited mesocotyl elongation in all lines, but only 3681-4 was sensitive to 10−6 M TIBA. IAA promoted only cell elongation, and TIBA inhibited both cell elongation and cell division. After IAA and TIBA treatments, endogenous IAA content changed in parallel with the mesocotyl growth rate under different seeding depths. Furthermore, ABP1 gene expression changed in parallel with the mesocotyl growth rate under deep seeding conditions. Therefore, deep seeding tolerance of 3681-4 line was achieved due to auxin-regulated rapid mesocotyl elongation.  相似文献   

9.
 The levels of different cytokinins, indole-3-acetic acid (IAA) and abscisic acid (ABA) in roots of Glycine max [L.] Merr. cv. Bragg and its supernodulating mutant nts382 were compared for the first time. Forty-eight hours after inoculation with Bradyrhizobium, quantitative and qualitative differences were found in the root's endogenous hormone status between cultivar Bragg and the mutant nts382. The six quantified cytokinins, ranking similarly in each genotype, were present at higher concentrations (30–196% on average for isopentenyl adenosine and dihydrozeatin riboside, respectively) in mutant roots. By contrast, the ABA content was 2-fold higher in Bragg, while the basal levels of IAA [0.53 μmol (g DW)−1, on average] were similar in both genotypes. In 1 mM NO3 -fed Bragg roots 48 h post-inoculation, IAA, ABA and the cytokinins isopentenyl adenine, and isopentenyl adenosine quantitatively increased with respect to uninoculated controls. However, only the two cytokinins increased in the mutant. High NO3 (8 mM) markedly reduced root auxin concentration, and neither genotypic differences nor the inoculation-induced increase in auxin concentration in Bragg was observed under these conditions. Cytokinins and ABA, on the other hand, were little affected by 8 mM NO3 . Root IAA/cytokinin and ABA/cytokinin ratios were always higher in Bragg relative to the mutant, and responded to inoculation (mainly in Bragg) and nitrate (both genotypes). The overall results are consistent with the auxin-burst-control hypothesis for the explanation of autoregulation and supernodulation in soybean. However, they are still inconclusive with respect to the inhibitory effect of NO3 . Received: 16 April 1999 / Accepted: 13 December 1999  相似文献   

10.
Wild populations of Fritillaria imperialis L. are facing extinction and need urgent conservation. This paper presents an efficient system for in vitro direct bulblet regeneration of these populations by petal culturing of flower buds. Petals at different developmental stages, green-closed flower bud (before nectar secretion) and red-closed flower bud (beginning of nectar secretion), were used as explants, and the effects of various proportions of cytokinin to auxin on direct bulblet regeneration pathway were evaluated. More explants switched on direct regeneration pathway in combination of auxins (0.6 mg l−1 NAA + 0.4 mg l−1 IAA) with higher level of cytokinin (1 mg l−1 BAP). In contrast, auxins (0.6 mg l−1 NAA + 0.4 mg l−1 IAA) with lower level of cytokinin (0.1 mg l−1 BAP) produced more bulblets per regenerated explant. In green-closed flower bud stage, direct bulblets regenerated from the end of petal where it was connected to the receptacle, while nectar secretion site was the place of bulblet formation in red-closed flower bud stage. In addition, genotype-dependency of direct bulblet regeneration pathway was investigated by using two different wild populations of Fritillaria imperialis. This plant regeneration procedure was applicable to different Fritillaria genotypes and regenerated bulblets were normal.  相似文献   

11.
Monensin and brefeldin A (BFA), inhibitors of Golgi-mediated protein secretion, rapidly perturb the transport catalytic activity of specific plasma membrane-associated efflux carriers for indole-3-acetic acid (IAA) and inhibit polar transport of IAA. To determine if these responses result solely from perturbation of the efflux carrier or whether specific auxin uptake carrier function is also affected, the influence of BFA on the cellular transport of a range of auxins with contrasting affinities for specific auxin uptake and efflux carriers was investigated in zucchini (Cucurbita pepo L.) hypocotyl tissue. In-flight addition of BFA (3 · 10−5 mol · dm−3) caused a rapid (lag < 10 min) and substantial (fourfold) increase in the rate of [1-14C]IAA net uptake by zucchini hypocotyl tissue. In the presence of the specific auxin efflux carrier inhibitor N-1-naphthylphthalamic acid (NPA; 3 · 10−6 mol · dm−3), BFA slightly reduced the rate of [1-14C]IAA net uptake. Stimulation of [1-14C]IAA net uptake by BFA was concentration-dependent. In the absence of BFA, net uptake of [1-14C]IAA exhibited the characteristic biphasic response to increasing concentrations of competing cold IAA but in the presence of BFA, [1-14C]IAA uptake decreased smoothly with increase in concentration of competing unlabelled IAA, indicating a loss of auxin efflux carrier activity but retention of functional uptake carriers. The half-time for mediated efflux of [1-14C]IAA from preloaded zucchini tissue was substantially increased by BFA (t1/2 = 51 min, controls; 107 min, BFA-treated). Treatment with BFA and/or NPA did not significantly affect the net uptake by, or efflux from, zucchini tissue of [1-14C]2,4-dichlorophenoxyacetic acid ([1-14C]2,4-D), a substrate for the auxin uptake carrier but not the auxin efflux carrier. Uptake of [1-14C]2,4-D declined smoothly with increasing concentrations of competing unlabelled IAA whether or not BFA was included in the uptake medium, confirming the failure of BFA to perturb auxin uptake carrier function. Transport of 1-[4-3H]naphthaleneacetic acid (1-NAA) exhibited little response to BFA or NPA, confirming that it is only a weakly transported substrate for the efflux carrier in zucchini cells. Received: 12 November 1997 / Accepted: 27 January 1998  相似文献   

12.
The radish varieties Cherry Belle and Long White Icicle wereused to investigate the role of the shoot and the effects ofsynthetic growth promoters in controlling cambial activity inthe seedling axis. Development was compared in excised roots, roots with hypocotylsattached and intact seedlings cultured aseptically on a nutrientmedium. No cambial divisions were seen in isolated radicleswhich had been cultured for ten days following excision butretention of hypocotyl tissue or the entire shoot resulted incambial activity and the production of secondary vascular tissues.Enriching the culture medium by raising the sucrose conantrationto 8% and including 10–5 M indol-3yl acetic acid (IAA)5 x 10–6 M 6-benzylaminopurine (BA) and 5 x 10–4Minositol enhanced root thickening, increasing stele and xylemdiameters in roots cultured both with and without attached shoottissues. The effects of shoot tissues and enrichment of themedium were additive. The effects of auxin, cytokinin and gibberellin (gibberellicacid, GA2) were also studied on daxpitated seedlings. BA wasmuch more effective in inducing cell divisions in the hypocotylthan either IAA or GA supplied separately but a mixture of IAA+GAalso produced clearly defined arcs of cambial tissue. Littlesecondary tissue had been produced after seven days' treatment,and stelar enlargement was due to the development of a cambialzone and cell expansion in the primary tissues. Only minor differencesin response were observed between the two varieties. No stimulation of storage organ development occurred when auxin,cytokinin or inositol was inwrporated into the inorganic culturesolution in which plants of Cherry Belle were grown. Rnphanus sarivus, radish, storage organ, cambial activity, growth promoters, indol-3-ylacetic acid, 6-benzylaminopurine, gibberellic acid  相似文献   

13.
Embryogenic cultures were induced from immature avocado zygotic embryos representing different botanical races and complex hybrids. The optimum induction medium consisted of B5 major salts, MS minor salts, 0.4 mg l−1 thiamine HCl, 100 mg l−1 myo-inositol, 30 g l−1 sucrose, 0.41 μM picloram and 8 g l−1 TC agar. Somatic embryogenesis occurred directly from the explants on induction medium, and secondary embryos and proembryonic masses proliferated in liquid and on semisolid maintenance medium. Embryogenic culture maintainance was optimized in liquid, filter-sterilized MS medium, supplemented with 30–50 mg l−1 sucrose, 4 mg l−1 thiamine HCl and 0.41 μM picloram. Two types of embryogenic cultures were recognized: –genotypes that proliferated as proembryonic masses in the presence of auxin (PEM-type) and; –genotypes in which the heart stage and later stages of somatic embryos developed in the presence of auxin(SE-type). Embryogenic suspension cultures became increasingly disorganized over time, and this was associated with progressive loss of embryogenic potential. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The effects of several concentrations of indole-3-acetic acid (IAA) and sucrose on xylogenic cambial activity and secondary xylem differentiation were investigated in isolated stem segments of Quercus robur L. supplied with liquid medium in aseptic conditions. After 5 weeks of culture auxin controlled cambial cell division and the number and size of vessel elements even without sugar in the medium. Sucrose modified these IAA effects, although little cambial activity occurred without auxin. The xylem increment correlated with changes of auxin concentration with the optimum at 28.5 μ M IAA. The formation of wide vessels was correlated with the optimal concentration of auxin. The frequency of vessel differentiation increased with auxin concentration. High concentrations of sucrose (0.24 M and 0.96 M ) reduced both the number of vessels and their diameter. The frequency of vessel formation was inhibited more than the vessel size by changes of sugar concentration. The vessels formed under low concentrations of IAA were circular in transverse section. With increase in IAA concentration the shape of the vessel cross-section changed to oval with the largest dimension in the radial direction.  相似文献   

15.
The amount of natural auxin collected in agar as a result of basipetal efflux from the cambial region of successive short sections of pine stem varies so that a wave-like pattern is formed. The wave-length is several times longer than the cell length in the cambial region, suggesting the existence of a supracellular oscillatory system, which forms a morphogenic field in the stem tissues, The amplitude of the auxin wave is amplified by apical application of IAA to the longer stem sections, particularly at she time of spring initiation of cambial activity. The wave of auxin disappears after simultaneous apical application of IAA and ABA. The modulatory effects of IAA and ABA are translocated along the investigated stem sections faster than known transport velocities of IAA molecules. This fact is considered as evidence of apical control of the morphogenic field by way of influence upon a supracellular system of conjugated oscillators in the tissue.  相似文献   

16.
N. W. Lepp  A. J. Peel 《Planta》1970,90(3):230-235
Summary Isolated bark strips of willow were sealed on to polythene tubes having three compartments. Colonies of the aphid Tuberolachnus salignus Gmelin were established on the bark at each end of the strip. IAA or kinetin at a concentration of 10-5M was applied to the cambial surface of the strip in one of the end compartments, whilst either 14C-labeled sucrose or 86RbCl was applied in the centre compartment.Both IAA and kinetin caused the activity from the 14C-Sucrose to move away from the area of their application, as measured by the specific activity of the honeydew collected from the aphid colonies. No effect of these hormones was demonstrated on the movement of 86Rb.The results from further experiments in which sieve element exudate was collected via the severed stylets of the aphid, indicate that IAA and kinetin increase the rate of loading of sugars into sieve elements, i.e. the source capacity of the bark to which they are applied.  相似文献   

17.
Changes in free Ca2+ in sieve-tube sap have been proposed to be important in the regulation of phloem transport, and Ca2+-activated protein kinase activity has been described in phloem exudate (S.A. Avdiushko et al. 1997 J Plant Physiol 150: 552–559). Using atomic absorption spectrometry, we have determined that the total Ca2+ concentration in sieve-tube sap from Ricinus seedlings containing the endosperm is about 100 μM (range 80–150 μM). We used three independent methods to determine the free calcium ion concentration in the phloem sap ([Ca2+]p). The first method was to calculate [Ca2+]p from the total Ca2+ concentration, in combination with the binding constants and concentrations of the ionic solutes in phloem sap. The resultant estimate of [Ca2+]p was 63 μM. The second method used the Ca-specific fluorescent dye 2-[2-(5-carboxy)oxazole]-5-hydroxy-6-aminobenzofuran-N,N,O-triacetic-acid (FURAPTRA) on exuded sieve-tube sap. Although the sap interfered severely with the fluorescence properties of the dye, Ca2+ titrations enabled a value of [Ca2+]p = 20 μM to be deduced. The third method used Ca2+-selective microelectrodes on exuded sap samples, which gave an average value for [Ca2+]p = 13 μM. No significant change in this value was observed during the sap exudation period. The Ca2+ buffer capacity was determined and the result of about 0.6 mmol · l−1 · pCa−1 displayed excellent agreement with the measured values of free and total Ca2+ concentration in sieve-tube sap. Since the measured values for free Ca2+ are 20- to 100-fold higher than those usually reported for the cytosol of a range of plant cells in resting conditions, it is concluded that either regulation of [Ca2+]p is of limited physiological importance, or that the Ca2+-dependent proteins respond only to relatively high [Ca2+]p. The implications for regulation of cytosolic free Ca2+ in symplastically connected companion cells is discussed. Received: 15 February 1998 / Accepted: 14 March 1998  相似文献   

18.
The major auxin of Scots pine (Pinus silvestris L.) which is transported basipetally into agar strips from the cambial region of the stem was quantified by the Went Avena coleoptile curvature assay before and after reversed phase C18 high performance liquid chromatography (HPLC), and then identified by full spectrum gas chromatography-mass spectrometry (GC-MS) as indole-3-acetic acid (IAA). The IAA was subsequently quantified by GC-MS-selected ion monitoring (SIM) using an internal standard of [13C]-(C6)-IAA. The amount of IAA collected into 22-millimeter long agar strips during 10 minutes of contact with the stem cambial region was estimated by GC-MS-SIM and the Went bioassay to be 2.3 and 2.1 nanograms per strip, respectively. The GC-MS technique thus confirmed the results obtained by the Went curvature assay. The Avena curvature assay revealed the presence of at least one other, more polar (based on HPLC retention time) auxin that diffused into the agar strips with the IAA. Its bioactivity was only 5% of the IAA fraction. Its HPLC retention time was earlier than IAA-glucoside, IAA-aspartate, or IAA-glycine, but the same as IAA-inositol. No significant amounts of inhibitors or synergists of IAA activity on the Avena assay were found in extracts corresponding to one or five strips of agar. Thus, the direct bioassay of the agar strips immediately after their removal from the cambial region of P. silvestris stem sections reflects the concentration of the native IAA. For both P. silvestris and lodgepole pine (Pinus contorta) a wavelike pattern of auxin stimulation of Avena curvature was found in agar strips exposed for only 10 minutes to the basal ends of an axial series of 6-millimeter long sections from the cambial region of the stem. This wavelike pattern was subsequently confirmed for P. contorta both by Avena curvature assay and by GC-MS-SIM of HPLC fractions at the retention time of [3H]IAA. The wavelike pattern of auxin diffusing from the cambial region of Pinus has thus been determined to consist primarily of IAA and this pattern has now been quantitated using both the Went Avena curvature assay and GC-MS-SIM with [13C]-C6-IAA as an internal standard.  相似文献   

19.

Key message

Lower promoter activity is closely associated with lower MdPIN1b expression in the M9 interstem, which might contribute to the dwarfing effect in apple trees.

Abstract

Apple trees grafted onto dwarfing rootstock Malling 9 (M9) produce dwarfing tree architecture with high yield and widely applying in production. Previously, we have reported that in Malus ‘Red Fuji’ (RF) trees growing on M9 interstem and Baleng Crab (BC) rootstock, IAA content was relatively higher in bark tissue of M9 interstem than that in scion or rootstock. As IAA polar transportation largely depends on the PIN-FORMED (PIN) auxin efflux carrier. Herein, we identify two putative auxin efflux carrier genes in Malus genus, MdPIN1a and MdPIN1b, which were closely related to the AtPIN1. We found that MdPIN1b was expressed preferentially in BC and M9, and the expression of MdPIN1b was significantly lower in the phloem of M9 interstem than that in the scion and rootstock. The distinct expression of MdPIN1b and IAA content were concentrated in the cambium and adjacent xylem or phloem, and MdPIN1b protein was localized on cell plasma membrane in onion epidermal cells transiently expressing 35S:MdPIN1b-GFP fusion protein. Interestingly, an MdPIN1b mutant allele in the promoter region upstream of M9 exhibited decreased MdPIN1b expression compared to BC. MdPIN1b over-expressing interstem in tobacco exhibited increased polar auxin transport. It is proposed that natural allelic differences decreased promoter activity is closely associated with lower MdPIN1b expression in the M9 interstem, which might limit the basipetal transport of auxin, and in turn might contribute to the dwarfing effect. Taken together, these results reveal allelic variation underlying an important apple rootstock trait, and specifically a novel molecular genetic mechanism underlying dwarfing mechanism.
  相似文献   

20.
We have studied the role of endogenous auxin on adventitious rooting in hypocotyls of derooted sunflower (Helianthus annuus L. var. Dahlgren 131) seedlings. Endogenous free and conjugated indole-3-acetic acid (IAA) were measured in three segments of hypocotyls of equal length (apical, middle, basal) by using gas chromatography-mass spectrometry with [13C6]-IAA as an internal standard. At the time original roots were excised (0 h), the free IAA level in the hypocotyls showed an acropetally decreasing gradient, but conjugated IAA level increased acropetally; i.e. free to total IAA ratio was highest in the basal portion of hypocotyls. The basal portion is the region where most of root primordia were found. Some primordia were seen in this region within 24 h after the roots were excised. The quantity of free IAA in the middle portion of the hypocotyl increased up to 15 h after excision and then decreased. In this middle region there were fewer root primordia, and they could not be seen until 72 h. In the apical portion the amount of free IAA steadily increased and no root primordia were seen by 72 h. Surgical removal of various parts of the hypocotyl tissues caused adventitious root formation in the hypocotyl regions where basipetally transported IAA could accumulate. Reduction in the basipetal flow of auxin by N-1-naphthylphthalamic acid and 2,3,5-tri-iodobenzoic acid resulted in fewer adventitious roots. The fewest root primordia were seen if the major sources of endogenous auxin were removed by decapitation of the cotyledons and apical bud. Exogenous auxins promoted rooting and were able to completely overcome the inhibitory effect of 2,3,5-tri-iodobenzoic acid. Exogenous auxins were only partially able to overcome the inhibitory effect of decapitation. We conclude that in sunflower hypocotyls endogenously produced auxin is necessary for adventitious root formation. The higher concentrations of auxin in the basal portion may be partially responsible for that portion of the hypocotyl producing the greatest number of primordia. In addition to auxins, other factors such as wound ethylene and lowered cytokinin levels caused by excision of the original root system cuttings must also be important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号