首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   2篇
  国内免费   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2015年   1篇
  2012年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2000年   1篇
  1996年   1篇
  1985年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
The morphological and functional heterogeneity of solid tumour cells can be observed in cancer cell lines cultured in vitro. We have combined analyses of microclones developed from single cells with micropore transmigration assays to demonstrate the co-existence of cellular subsets differing in morphology and motile activity, as well as Cx43 (connexin 43) and N-cadherin expression within lung carcinoma A549 populations. 'Fibroblastoid' cells, characterized by high motility, polarized morphology and plasmalemmal localization of Cx43, displayed the strongest aptitude for transmigration through narrow obstacles. Due to high mitotic activity, they maintain the whole population but can also give rise to a sub-population of quiescent and immobile 'epithelioid' cells. Our observations indicate that phenotypic transitions between the fibroblastoid and epithelioid phenotype account for the heterogeneity of metastable A549 cell populations.  相似文献   
2.
The softening of wet lipid bilayer membranes during their gel-to-fluid first-order phase transition is studied by computer simulation of a family of two-dimensional microscopic interaction models. The models include a variable number, q, of lipid chain conformational states, where 2q10. Results are presented as functions of q and temperature for a number of bulk properties, such as internal energy, specific heat, and lateral compressibility. A quantitative account is given of the statistics of the lipid clusters which are found to form in the neighborhood of the transition. The occurrence of these clusters is related to the softening and the strong thermal density fluctuations which dominate the specific heat and the lateral compressibility for the high-q models. The cluster distributions and the fluctuations behave in a manner reminiscent of critical phenomena and percolation. The findings of long-lived metastable states and extremely slow relaxational behavior in the transition region are shown to be caused by the presence of intermediate lipid chain conformational states which kinetically stabilize the cluster distribution and the effective phase coexistence. This has as its macroscopic consequence that the first-order transition apperas as a continuous transition, as invariably observed in all experiments on uncharged lecithin bilayer membranes. The results also suggest an explanation of the non-horizontal isotherms of lipid monolayers. Possible implications of lipid bilayer softening and enhanced passive permeability for the functioning of biological membranes are discussed.Abbreviations PC phosphatidvlcholine - DMPC dimyristoyl PC - DPPC dipalmitoyl PC - ac alternating current - DSC differential scanning calorimetry - T m lipid gel-to-fluid phase transition temperature - TEMPO 2,2,6,6-tetramethylpiperidine-N-oxyl Supported by the Danish Natural Science Research Council and A/S De Danske Spritfabrikkers JubilæumslegatSupported in part by the NSERC of Canada and Le FCAC du Quebec  相似文献   
3.
The native form of serine protease inhibitors (serpins) is kinetically trapped in a metastable state, which is thought to play a central role in the inhibitory mechanism. The initial binding complex between a serpin and a target protease undergoes a conformational change that forces the protease to translocate toward the opposite pole. Although structural determination of the final stable complex revealed a detailed mechanism of keeping the bound protease in an inactive conformation, it has remained unknown how the serpin exquisitely translocates a target protease with an acyl-linkage unhydrolyzed. We previously suggested that the acyl-linkage hydrolysis is strongly suppressed by active site perturbation during the protease translocation. Here, we address what induces the transient perturbation and how the serpin metastability contributes to the perturbation. Inhibitory activity of alpha1-antitrypsin (alpha1AT) toward elastase showed negative correlations with medium viscosity and Stokes radius of elastase moiety, indicating that viscous drag directly affects the protease translocation. Stopped-flow measurements revealed that the change in the inhibitory activity is primarily caused by the change in the translocation rate. The native stability of alpha1AT cavity mutants showed a negative correlation with the translocation rate but a positive correlation with the acyl-linkage hydrolysis rate, suggesting that the two kinetic steps are not independent but closely related. The degree of active site perturbation was probed by amino acid nucleophiles, supporting the view that the changes in the acyl-linkage hydrolysis rate are due to different perturbation states. These results suggest that the active site perturbation is caused by local imbalance between a pulling force driving protease translocation and a counteracting viscous drag force. The structural architecture of serpin metastability seems to be designed to ensure the active site perturbation by providing a sufficient pulling force, so the undesirable hydrolytic activity of protease is strongly suppressed during the translocation.  相似文献   
4.
alpha(1)-Antitrypsin is the most abundant protease inhibitor in plasma and is the archetype of the serine protease inhibitor superfamily. Genetic variants of human alpha(1)-antitrypsin are associated with early-onset emphysema and liver cirrhosis. However, the detailed molecular mechanism for the pathogenicity of most variant alpha(1)-antitrypsin molecules is not known. Here we examined the structural basis of a dozen deficient alpha(1)-antitrypsin variants. Unlike most alpha(1)-antitrypsin variants, which were unstable, D256V and L41P variants exhibited extremely retarded protein folding as compared with the wild-type molecule. Once folded, however, the stability and inhibitory activity of these variant proteins were comparable to those of the wild-type molecule. Retarded protein folding may promote protein aggregation by allowing the accumulation of aggregation-prone folding intermediates. Repeated observations of retarded protein folding indicate that it is an important mechanism causing alpha(1)-antitrypsin deficiency by variant molecules, which have to fold into the metastable native form to be functional.  相似文献   
5.
6.
In this communication, novel and simplified structure Cu(In,Ga)Se2 (CIGS) solar cells, which nominally consist of only a CIGS photoabsorber layer sandwiched between back and front contact layers but yet demonstrate high photovoltaic efficiencies, are reported. To realize this accomplishment, Si‐doped CIGS films grown by the three‐stage coevaporation method, B‐doped ZnO transparent conductive oxide front contact layers deposited by chemical vapor deposition, and heat–light soaking treatments are used. Si‐doping of CIGS films is found to modify the film surfaces and grain boundary properties and also affect the alkali metal distribution profiles in CIGS films. These effects are expected to contribute to improvements in buffer‐free CIGS device performance. Heat–light soaking treatments, which are occasionally performed to improve conventional buffer‐based CIGS device performance, are found to be also effective in enhancing buffer‐free CIGS photovoltaic efficiencies. This result suggests that the mechanism behind the beneficial effects of heat–light soaking treatments originates from CIGS bulk issues and is independent of the buffer materials. Consequently, over 16.5% efficiencies, including an independently certified value, are demonstrated from completely buffer‐free CIGS photovoltaic devices.  相似文献   
7.
生态学范式变迁综论   总被引:85,自引:16,他引:69  
邬建国 《生态学报》1996,16(5):449-460
拟总结生态学研究在若干方面的最新进展,并涉及到平衡与非平衡、同质性与异质性、决定性与随机性,以及单一尺度与等级关联等问题。在此基础上,作者将对生态学中的范式变迁作一论述。缀块动态观点和等级理论的结合,使尺度与空间异质性明确地联系在一起,从而正在形成一个新的生态学范式,并导致了关于生态学系统时空动态的新观点。等级缀块动态范式的主要内容包括缀块等级系统概念、系统动态与缀块变化观点、格局-过程-尺度观点  相似文献   
8.
The native form of inhibitory serpins (serine protease inhibitors) is not in the thermodynamically most stable state but in a metastable state, which is critical to inhibitory functions. To understand structural basis and functional roles of the native metastability of inhibitory serpins, we have been characterizing stabilizing mutations of human alpha1-antitrypsin, a prototype inhibitory serpin. One of the sites that has been shown to be critical in stability and inhibitory activity of alpha1-antitrypsin is Lys335. In the present study, detailed roles of this lysine were analyzed by assessing the effects of 13 different amino acid substitutions. Results suggest that size and architect of the side chains at the 335 site determine the metastability of alpha1-antitrypsin. Moreover, factors such as polarity and flexibility of the side chain at this site, in addition to the metastability, seem to be critical for the inhibitory activity. Substitutions of the lysine at equivalent positions in two other inhibitory serpins, human alpha1-antichymotrypsin and human antithrombin III, also increased stability and decreased inhibitory activity toward alpha-chymotrypsin and thrombin, respectively. These results and characteristics of lysine side chain, such as flexibility, polarity, and the energetic cost upon burial, suggest that this lysine is one of the structural designs in regulating metastability and function of inhibitory serpins in general.  相似文献   
9.
The energy density of battery systems is limited largely by the electrochemical window of the electrolyte. Herein, the combined thermodynamic and kinetic effects of mechanically induced metastability are shown to greatly widen the operational voltage window of solid‐state batteries based on ceramic‐sulfide electrolytes. Solid electrolyte voltage stability up to 10 V is achieved with minimal degradation, far beyond the capability of organic liquid electrolytes. Furthermore, combined experiment, ab initio computation, and theoretical modeling identify the nature of mechanically constrained Li10GeP2S12 decomposition both within the bulk and at interfaces with cathode materials at very high voltages. Previously unclear kinetic processes are identified that, when properly implemented, can potentially allow solid‐state full cells with remarkably high operational voltages.  相似文献   
10.
The phenomena of protein reconstitution and three-dimensional domain swapping reveal that highly similar structures can be obtained whether a protein is comprised of one or more polypeptide chains. In this review, we use protein reconstitution as a lens through which to examine the range of protein tolerance to chain interruptions and the roles of the primary structure in related features of protein structure and folding, including circular permutation, natively unfolded proteins, allostery, and amyloid fibril formation. The results imply that noncovalent interactions in a protein are sufficient to specify its structure under the constraints imposed by the covalent backbone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号