首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6890篇
  免费   419篇
  国内免费   249篇
  2024年   11篇
  2023年   109篇
  2022年   104篇
  2021年   186篇
  2020年   168篇
  2019年   219篇
  2018年   266篇
  2017年   189篇
  2016年   200篇
  2015年   241篇
  2014年   283篇
  2013年   752篇
  2012年   180篇
  2011年   245篇
  2010年   226篇
  2009年   262篇
  2008年   280篇
  2007年   375篇
  2006年   336篇
  2005年   316篇
  2004年   246篇
  2003年   229篇
  2002年   210篇
  2001年   174篇
  2000年   134篇
  1999年   124篇
  1998年   133篇
  1997年   128篇
  1996年   100篇
  1995年   129篇
  1994年   99篇
  1993年   76篇
  1992年   99篇
  1991年   59篇
  1990年   64篇
  1989年   76篇
  1988年   67篇
  1987年   63篇
  1986年   52篇
  1985年   59篇
  1984年   79篇
  1983年   50篇
  1982年   50篇
  1981年   32篇
  1980年   25篇
  1979年   19篇
  1978年   9篇
  1976年   7篇
  1975年   5篇
  1974年   4篇
排序方式: 共有7558条查询结果,搜索用时 187 毫秒
1.
Abstract

The hepatitis C virus (HCV) encodes the p7 protein that oligomerizes to form an ion channel. The 63 amino acid long p7 monomer is an integral membrane protein predominantly found in the endoplasmic reticulum (ER). Although it is currently unknown whether p7 is incorporated into secreted virions, its presence is crucial for the release of infectious virus. The molecular and biophysical mechanism employed by the p7 ion channel is largely unknown, but in vivo it is likely to be embedded in membranes undergoing changes in lipid composition. In this study we analyze the influence of the lipid environment on p7 ion channel structure and function using electrophysiology and synchrotron radiation circular dichroism (SRCD) spectroscopy. We incorporated chemically synthesized p7 polypeptides into artificial planar membranes of various lipid compositions. A lipid bilayer composition comprising phosphatidylcholine (PC) and phosphatidylethanolamine (PE) (4:1 PC:PE) led to burst-like patterns in the channel recordings with channel openings lasting up to 0.5 s. The reverse ratio of PC:PE (1:4) gave rise to individual channels continuously opening for up to 8 s. SRCD spectroscopy of p7 embedded into liposomes of corresponding lipid compositions suggests there is a structural effect of the lipid composition on the p7 protein.  相似文献   
2.
Nitrogen dioxide less than 100 ppm in air induced lipid peroxidation of liposome composed of l-palmitoyl-2-arachidonylphosphatidylcholine as assessed by thiobarbituric acid reactivity. The nitrogen dioxide-induced lipid peroxidation was enhanced by cysteine, glutathione and bovine serum albumin. While the activity of nitrogen dioxide in air to induce single strand breaks of supercoiled plasmid DNA was low, the breaking was remarkably enhanced by cysteine, glutathione and bovine serum albumin. ESR spin trapping using 5,5-dimethyl-1-pyrroline N-oxide showed that certain strong oxidant(s) were generated by interaction of nitrogen dioxide and cysteine. The spin trapping using 3,5-dibromo-4-nitrosobenzene-sulfonate suggested that sulfur-containing radicals were generated by interaction of nitrogen dioxide and cysteine or glutathione. Hence, certain sulfur-containing radicals generated by the interaction which could effectively induce lipid peroxidation and DNA strand breaks.  相似文献   
3.
Binding of the cationic tetra(tributylammoniomethyl)-substituted hydroxoaluminum phthalocyanine (AlPcN4) to bilayer lipid membranes was studied by fluorescence correlation spectroscopy (FCS) and intramembrane field compensation (IFC) methods. With neutral phosphatidylcholine membranes, AlPcN4 appeared to bind more effectively than the negatively charged tetrasulfonated aluminum phthalocyanine (AlPcS4), which was attributed to the enhancement of the coordination interaction of aluminum with the phosphate moiety of phosphatidylcholine by the electric field created by positively charged groups of AlPcN4. The inhibitory effect of fluoride ions on the membrane binding of both AlPcN4 and AlPcS4 supported the essential role of aluminum-phosphate coordination in the interaction of these phthalocyanines with phospholipids. The presence of negative or positive charges on the surface of lipid membranes modulated the binding of AlPcN4 and AlPcS4 in accord with the character (attraction or repulsion) of the electrostatic interaction, thus showing the significant contribution of the latter to the phthalocyanine adsorption on lipid bilayers. The data on the photodynamic activity of AlPcN4 and AlPcS4 as measured by sensitized photoinactivation of gramicidin channels in bilayer lipid membranes correlated well with the binding data obtained by FCS and IFC techniques. The reduced photodynamic activity of AlPcN4 with neutral membranes violating this correlation was attributed to the concentration quenching of singlet excited states as proved by the data on the AlPcN4 fluorescence quenching.  相似文献   
4.
The biochemical responses of Holcus lanatus L. to copper and arsenate exposure were investigated in arsenate‐tolerant and ‐non‐tolerant plants from uncontaminated and arsenic/copper‐contaminated sites. Increases in lipid peroxidation, superoxide dismutase (SOD) activity and phytochelatin (PC) production were correlated with increasing copper and arsenate exposure. In addition, significant differences in biochemical responses were observed between arsenate‐tolerant and ‐non‐tolerant plants. Copper and arsenate exposure led to the production of reactive oxygen species, resulting in significant lipid peroxidation in non‐tolerant plants. However, SOD activity was suppressed upon metal exposure, possibly due to interference with metallo‐enzymes. It was concluded that in non‐tolerant plants, rapid arsenate influx resulted in PC production, glutathione depletion and lipid peroxidation. This process would also occur in tolerant plants, but by decreasing the rate of influx, they were able to maintain their constitutive functions, detoxify the metals though PC production and quench reactive oxygen species by SOD activity.  相似文献   
5.
Energy storage in arthropods has important implications for survival and reproduction. The lipid content of 276 species of adult arthropods with wet mass in the range 0.2–6.13 g is determined to assess how lipid mass scales with body mass. The relative contribution of lipids to total body mass is investigated with respect to phylogeny, ontogeny and sex. The lipid content of adult insects, arachnids, and arthropods in general shows an isometric scaling relationship with respect to body mass (M) (Marthropod lipid = ?1.09 ×Mdry1.01 and Marthropod lipid = ?1.00 ×Mlean0.98). However, lipid allocation varies between arthropod taxa, as well as with sex and developmental stage within arthropod taxa. Female insects and arachnids generally have higher lipid contents than males, and larval holometabolous insects and juvenile arachnids have higher lipid contents than adults.  相似文献   
6.
《Cell reports》2020,30(4):1129-1140.e5
  1. Download : Download high-res image (253KB)
  2. Download : Download full-size image
  相似文献   
7.
Tadmor is a Syrian barley landrace that has adapted to semi-arid environments. Its leaves are pale green because of a 30% decrease in the chlorophyll and the carotenoid content of the chloroplasts (leading to a 7·5% decrease in light absorption) compared with barley genotypes that are not adapted to harsh Mediterranean climatic conditions (e.g. Plaisant). This difference in pigment content was attenuated during growth of the plants in strong light, but was strongly amplified when strong light was combined with a high growth temperature. The low pigment content of Tadmor leaves was not associated with significant changes in the pigment distribution between the photosystems or between the reaction centres of the photosystems and their associated chlorophyll antennae. No significant difference in the photosynthetic activity (O2 production per unit absorbed light) was observed between Tadmor and Plaisant. The conversion of violaxanthin to zeaxanthin in strong light and its reversal in darkness were much faster and operated at a higher capacity in Tadmor leaves compared with Plaisant leaves, resulting in an increased photostability of photosystem II in the former leaves. The accelerated xanthophylls interconversion in the Syrian landrace was associated with, and possibly related to, an increased fluidity of the thylakoid membranes. The lipid peroxide level was lower in Tadmor compared with Plaisant. In contrast, no difference was found in the non-photochemical quenching of chlorophyll fluorescence between the two barley genotypes. The data indicate that the pale green Syrian landrace is equipped to survive excessive irradiance through a passive reduction of the light absorptance of its leaves, which mitigates the heating effects of strong light, and through the active protection of its photochemical apparatus by a rapid xanthophyll cycling.  相似文献   
8.
9.
Summary FABPs in the various tissues play an important role in the intracellular fatty acid transport and metabolism. Reye's syndrome (RS) and multisystemic lipid storage (MLS) are human disorders characterized by a disturbance of lipid metabolism of unknown etiology. We investigated for the first time L-FABP in these two conditions. Affinity purified antibodies against chicken L-FABP were raised in rabbits, and found to cross-react specifically with partially purified human L-FABP. L-FABP content in liver samples of two patients with RS and MLS was investigated by immuno-histochemistry, SDS-PAGE and ELISA. L-FABP immuno-histochemistry showed increased reactivity in the liver of RS patient and normal reactivity in MLS liver. L-FABP increase in RS liver was confirmed by densitometry of SDS-PAGE and ELISA method. By these two methods the increase amounted to 180% and 199% (p < 0.02), respectively, as compared to controls. A possible role of L-FABP in the pathogenesis of RS is discussed.  相似文献   
10.
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号