首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   948篇
  国内免费   23篇
  完全免费   107篇
  2016年   1篇
  2015年   2篇
  2014年   9篇
  2013年   9篇
  2012年   24篇
  2011年   30篇
  2010年   11篇
  2009年   69篇
  2008年   63篇
  2007年   80篇
  2006年   86篇
  2005年   68篇
  2004年   39篇
  2003年   41篇
  2002年   60篇
  2001年   46篇
  2000年   37篇
  1999年   19篇
  1998年   21篇
  1997年   16篇
  1996年   35篇
  1995年   15篇
  1994年   33篇
  1993年   34篇
  1992年   43篇
  1991年   12篇
  1990年   42篇
  1989年   15篇
  1988年   13篇
  1987年   10篇
  1986年   30篇
  1985年   8篇
  1984年   12篇
  1983年   5篇
  1982年   8篇
  1981年   3篇
  1980年   10篇
  1979年   5篇
  1978年   8篇
  1977年   3篇
  1974年   2篇
  1973年   1篇
排序方式: 共有1078条查询结果,搜索用时 26 毫秒
1.
农业面源污染对水体富营养化的影响及其防治措施   总被引:176,自引:5,他引:171       下载免费PDF全文
全为民  严力蛟 《生态学报》2002,22(3):291-299
随着点源污染得到逐步的治理,农业面源污染已成为水体富营养化的主要污染源,并引起了人们的极大关注,简要地概述了农业面源 水体富营养化中所起的重要作用,同时了国内外防治农业面源污染的主要措施,指出了防治农业面源污染的难点和建立稳定、和谐与良性循环的农业生态系统是治理农业面源污染的长久之针。  相似文献
2.
人工湿地植物对观赏水中氮磷去除的贡献   总被引:104,自引:3,他引:101       下载免费PDF全文
蒋跃平  葛滢  岳春雷  常杰 《生态学报》2004,24(8):1718-1723
研究了处理观赏用轻度富营养化水的人工湿地中植物的生长特性和氮磷去除作用。研究发现 ,所选用的 2 1种植物中 ,有17种植物在人工湿地中生长良好 ,稳定生长 10 5 d以后 ,其平均总生物量在 15 5~ 1317g/ m2之间 ,除了鸭跖草的地上地下生物量比 (A/ U)为 2 0 .5外 ,其余都在 1.18~ 4 .2 9之间。植株地上部 N和 P的浓度分别在 10 .99~ 34.74 mg/ g和 0 .5 9~ 3.81mg/ g之间 ;地下部 N和 P浓度分别在 6 .2 0~ 2 9.5 0 mg/ g及 0 .72~ 3.83mg/ g之间。大部分植物地上部 N和 P的浓度大于地下部 (p<0 .0 5 )。植物的 N、P积累量分别在 2 .10~ 2 4 .4 8g/ m2 和 0 .2 3~ 1.95 g/ m2 之间。在处理轻度富营养化水的人工湿地中 ,植物吸收对氮磷的去除起着主要作用——贡献率分别为 4 6 .8%和 5 1.0 %。植物的氮磷积累量与浓度及生物量之间均存在显著相关 ,所以可以直接以生物量为指标选择人工湿地植物。同时考虑净化和景观效果 ,可为处理城镇轻度富营养化水的人工湿地的植物选择提供参考  相似文献
3.
富营养化水体的水生植物净化试验研究   总被引:91,自引:2,他引:89       下载免费PDF全文
利用水生植物净化和底泥遮蔽的方法对养鱼池的富营养化水体进行控制研究.结果表明,金鱼藻等6种水生植物对水中总氮、总磷和硝态氮有较好的去除效果,而以狐尾藻和微齿眼子菜两种效果最好,1个月后对总氮的去除率分别为83.84%和77.54%,对硝态氮的去除率分别为95.85%和90.65%,磷的去除率都达到了91.7%.但对氨氮的去除效果稍差,1个月时去除效果只有14%~70%.底泥进行塑料遮蔽处理后在前期(15~20d)能控制底泥中营养盐的释放,但不能保持长久;并在后期表现出“补偿效应”.试验结果还表明。水生植物能有效提高水体透明度和水体观感,但对改善COD和DO的效果不明显.  相似文献
4.
以浮床空心菜(Ipomoea aquatica)、水芹(Oenanthe javanica)和无植物系统为对象,研究了其在富营养化水体中对N、P的去除及其N2O的排放情况.结果表明,浮床植物系统对水体中N、P具有良好的净化效果,植物组织所累积的N、P量分别占各自系统去除量的0.32%~63.87%,说明植物的同化吸收作用是N、P去除的主要途径.换水周期内浮床植物系统中硝化反应进行充分,而反硝化反应相对缓慢,导致系统具有较高的NH4+- N去除率,而产生NO3--N累积.植物的存在降低了系统中N 2O的排放通量.生长较好的空心菜系统在换水前后平均N2O排放量最低,为17.14 μg N·m-2·h-1,空白高达85.08 μg N·m-2 ·h-1,水芹为37.38 μg N·m-2·h-1.  相似文献
5.
香根草对富营养化水体净化效果研究   总被引:61,自引:4,他引:57       下载免费PDF全文
采用浮床种植香根草技术研究丁香根草对富营养化水体的净化能力.结果表明,香根草对富营养化水体中的氮、磷、COPD、BOD等具有明显的去除效果,能显著改善富营养化水体的水质.研究结果为发展利用陆生植物治理富营养化水域提供了新的途径.  相似文献
6.
人工湿地的氮去除机理   总被引:61,自引:1,他引:60       下载免费PDF全文
卢少勇  金相灿  余刚 《生态学报》2006,26(8):2670-2677
湖泊等水环境的富营养化给人类带来诸多损害,如环境、生态和经济等方面的损害。富营养化的原因和控制途径引起了包括中国在内的很多国家的关注。我国针对水环境的富营养化问题开展了大量的工作。氮是引发水环境富营养化的主要营养物之一。外源氮负荷(分点源和非点源两部分)是水环境污染负荷的重要组成部分。传统污水处理技术应用于收集系统欠缺的非点源污染的治理时成本过高。人工湿地是有效削减水环境中外源氮负荷的重要技术手段,在处理非点源污染源带来的氮负荷时更是如此。人工湿地具有氮去除效果好、耐冲击负荷能力强、投资低和生态环境友好等优点。因此人工湿地非常适合于水环境富营养化的防治。阐明人工湿地中氮的去除机理对水环境的富营养化等具有重要的意义。防渗人工湿地的氮去除机理主要包括挥发、氨化、硝化/反硝化、植物摄取和基质吸附。未防渗的人工湿地中,周围水体与人工湿地的氮交换影响着人工湿地中氮的去除。一般情况下,人工湿地中硝化/反硝化是最主要的氮去除机理。pH值小于7.5时,氨挥发可忽略。pH值在9.3以上时,氨挥发很显著。处理生活污水的人工湿地中氮的去除主要是依靠微生物的硝化/反硝化作用。在进水负荷低、气候适宜、植物物种适宜和收割频率与时机适宜的条件下,植物收割可能成为主要的去氮途径。人工合理导向的湿地的氮去除效果通常优于天然湿地。合理的设计(填料的搭配、植物物种的配置以及布水和集水的优化)对人工湿地系统中氮去除的改善有重要影响。合理的运行,如有效的水位控制,正确的植物培育、合理的植物收割等,能有效地改善湿地中的氮去除。  相似文献
7.
三峡水库富营养化问题与对策研究   总被引:60,自引:2,他引:58       下载免费PDF全文
三峡水库蓄水后,大部分库湾已出现富营养化态势,并暴发了数次以甲藻(拟多甲藻)和硅藻(小环藻)为主的水华现象,特别是在春季。以香溪河库湾为例,分析两周年的营养状态变化,总体上说,除冬季外,大多数月份为富营养,在春季则为重富营养。对三峡水库22条入库支流库湾的营养状态进行综合评价,结果表明,有5条(22.7%)支流库湾为中营养,17条(77.3%)支流库湾为富营养(重富营养化支流库湾有10条,占45.5%);但三峡水库本身水质尚好,仍保持中营养状态。统计分析表明,入库支流流域的年均流量和流域面积与支流库湾叶绿素a存在显著负相关关系,说明支流库湾越小或年均流量越小,藻类叶绿素a浓度就越高,即越容易在春季形成水华。文中讨论了控制和减缓富营养化几项措施。  相似文献
8.
湖泊富营养化治理的生态工程   总被引:55,自引:3,他引:52  
1996年对长春南湖的富营养化实施了生治理工作,调查结果表明,通过收获水生高等植物和鱼产品带出湖体的P量分别为149.6和189.9kg,通过蚌体生长固定的P量为153.4kg,三者合计492.9kg,与湖体会年P输入量大体持平,生态工程运转后,水质明显好转,湖水中的总P浓度逐年下降,浮游植物个体密度减小,种类数增加,生态工程是城市湖泊富营养化治理较为理想的方法。  相似文献
9.
Engineering approaches (nutrient removal, sediment pumping, hypolimnion oxygenation, alum treatments) may be most appropriate to deep lakes where the aim of restoration from eutrophication is simply to reduce the production and crop of one component, the phytoplankton. They do not always give the desired results because the nutrient loading may only be reduced to a limited extent. There are additional problems in shallow lakes where change of state between community dominance (aquatic plants versus plankton) is wanted. Each community has powerful buffering mechanisms and biomanipulation may be essential to switch one state to another even with considerable nutrient reduction. For the phytoplankton-dominated community the buffers include the advantages of early growth, lower diffusion pathways for CO2, overhead shading, and an absence of large cladoceran grazers. This later is because open-water shallow environments provide no refuges against predation for the large Cladocera which are both the most efficient grazers and the most favoured prey for fish. Restoration of aquatic plants may then require provision of refuges for the grazers. Different sorts of refuge are discussed using case studies of Hoveton Great Broad and Cockshoot Broad in the Norfolk Broadland.  相似文献
10.
Cyanobacterial dominance in lakes   总被引:51,自引:12,他引:39  
Cyanobacterial dominance in lakes has received much attention in the past because of frequent bloom formation in lakes of higher trophic levels. In this paper, underlying mechanisms of cyanobacterial dominance are analyzed and discussed using both original and literature data from various shallow mixed and deep stratifying lakes from temperate and (sub)tropical regions. Examples include all four ecotypes of cyanobacteria sensu Mur et al. (1993), because their behavior in the water column is entirely different. Colony forming species (Microcystis) are exemplified from the large shallow Tai Hu, China. Data from a shallow urban lake, Alte Donau in Austria are used to characterize well mixed species (Cylindrospermopsis), while stratifying species (Planktothrix) are analyzed from the deep alpine lake Mondsee. Nitrogen fixing species (Aphanizomenon) are typified from a shallow river-run lake in Germany. Factors causing the dominance of one or the other group are often difficult to reveal because several interacting factors are usually involved which are not necessarily the same in different environments. Strategies for restoration, therefore, depend on both the cyanobacterial species involved and the specific causing situation. Some uncertainty about the success of correctives, however, will remain due to the stochastic nature of the events and pathways leading to cyanobacterial blooms. Truly integrated research programs are required to generate predictive models capable of quantifying key variables at appropriate spatial and temporal scales.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号