首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
工业革命以来, 不断加剧的人类活动所引起的大气CO2浓度增加、温度上升等全球变化问题, 正使得海洋生态系统面临着前所未有的压力。该文通过文献计量的方法分析了国内外的研究现状, 简要地回顾了全球变化对海洋生态系统影响研究的发展简史, 并聚焦海洋暖化、海洋酸化和富营养化与缺氧这三个核心研究方向, 重点阐述了它们对海洋生态系统初级生产的关键过程的影响, 总结了已取得的重要进展以及存在的主要问题, 最后提出前沿展望。  相似文献   

2.
《植物生态学报》1958,44(5):449
全球变化与生态系统研究是一个宏观与微观相互交叉、多学科相互渗透的前沿科学领域, 重点研究生态系统结构和功能对全球变化的响应及反馈作用, 其目标是实现人类对生态系统服务的可持续利用。《植物生态学报》的《全球变化与生态系统》专辑在对国内外全球变化研究进行历史回顾和综合分析的基础上, 总结了全球变化与生态系统研究的阶段性重大进展及存在的主要问题, 并对全球变化研究的前沿方向进行展望和建议。根据研究内容和对象, 该专辑系统地综述了不同全球变化因子, 包括CO2和O3浓度升高、气候变暖、降水格局改变、氮沉降增加、土地利用变化等对陆地植物生理生态、群落结构及生态系统功能等的影响以及全球变化对海洋生态系统的影响; 探讨生态系统关键过程以及生物多样性的变化; 在明确全球变化生态效应的基础上, 阐明这些影响对气候和环境变化的反馈机制, 为构筑全球变化的适应对策提供生态学理论基础。  相似文献   

3.
人类活动引起的大气CO2浓度的升高,除了使全球温度升高外,导致的另一个严重生态问题——海洋酸化(Ocean acidification,OA),受到社会各界包括科研界的高度重视,该领域的大部分研究结果都是在近十年才发表出来的,目前还有很多需要解决的问题。海洋酸化的研究涉及到很多学科的交叉包括化学、古生物学、生态学、生物地球化学等等。在生物学领域,海洋酸化主要围绕敏感物种,例如由碳酸钙形成贝壳或外骨骼的贝类,珊瑚礁群体等。鱼类作为海洋脊椎动物的代表生物类群,自身具有一定的酸碱平衡调节能力,但相关海洋酸化方向的研究并不是很多。尽管人们对于海洋酸化对鱼类的影响了解甚少,这并不说明海洋酸化对鱼类没有作用或者效应小,在相关研究逐步展开的同时,发现鱼类同样受到海洋酸化的危害,几乎涉及到鱼类整个生活史和几乎大部分生理过程,尤其是早期生活史的高度敏感。因此就目前国内外对此领域研究结果做综述,以期待业界同行能够对海水鱼类这个大的类群引起重视。  相似文献   

4.
海洋酸化对珊瑚礁生态系统的影响研究进展   总被引:1,自引:0,他引:1  
张成龙  黄晖  黄良民  刘胜 《生态学报》2012,32(5):1606-1615
目前,大气CO2浓度的升高已导致海水pH值比工业革命前下降了约0.1,海水碳酸盐平衡体系随之变化,进而影响珊瑚礁生态系统的健康。近年来的研究表明海洋酸化导致造礁石珊瑚幼体补充和群落恢复更加困难,造礁石珊瑚和其它造礁生物(Reef-building organisms)钙化率降低甚至溶解,乃至影响珊瑚礁鱼类的生命活动。虽然海洋酸化对造礁石珊瑚光合作用的影响不显著,但珊瑚-虫黄藻共生体系会受到一定影响。建议选择典型海区进行长期系统监测,结合室内与原位模拟试验,从个体、种群、群落到系统不同层面,运用生理学和分子生物学技术,结合生态学研究手段,综合研究珊瑚的相应响应,以期深入认识海洋酸化对珊瑚礁生态系统健康(例如珊瑚白化)的影响及其效应。  相似文献   

5.
景观生态学:海洋生态系统研究的一个新视角   总被引:5,自引:0,他引:5  
全球海洋生态系统作为异质性的复杂巨系统是一类景观生态系统 ,具有明显的等级结构 ,因此 ,景观生态学的原理和方法完全可以应用到海洋生态学的研究中来。生态系统的尺度限制了海洋生态学向更加宏观的方向进一步发展 ,在景观的水平上 ,运用景观生态学的理论和方法可以更好地在多个尺度上开展深入广泛的研究。本文不仅讨论了海洋景观的空间异质性 ,而且就海洋景观生态学的若干研究方向进行了探讨。  相似文献   

6.
Climate change refugia in the terrestrial biosphere are areas where species are protected from global environmental change and arise from natural heterogeneity in landscapes and climate. Within the marine realm, ocean acidification, or the global decline in seawater pH, remains a pervasive threat to organisms and ecosystems. Natural variability in seawater carbon dioxide (CO2) chemistry, however, presents an opportunity to identify ocean acidification refugia (OAR) for marine species. Here, we review the literature to examine the impacts of variable CO2 chemistry on biological responses to ocean acidification and develop a framework of definitions and criteria that connects current OAR research to management goals. Under the concept of managing vulnerability, the most likely mechanisms by which OAR can mitigate ocean acidification impacts are by reducing exposure to harmful conditions or enhancing adaptive capacity. While local management options, such as OAR, show some promise, they present unique challenges, and reducing global anthropogenic CO2 emissions must remain a priority.  相似文献   

7.
基于文献计量的全球海洋酸化研究状况分析   总被引:6,自引:0,他引:6  
陈芃  陈新军  陈长胜  胡飞飞 《生态学报》2018,38(10):3368-3381
海洋酸化(Ocean acidification)为目前备受人们关注的全球性问题。因此为了能够客观地揭示海洋酸化的研究态势,研究采用文献计量分析(Bibliometric analysis)的方法,以海洋酸化概念提出后(2004年以后)ISI Web of Science期刊引文数据库中涉及到海洋酸化研究的所有文献为样本,对文献的增长趋势及期刊分布进行描述统计,并基于关键词的知识图谱及突变分析的方法探究海洋酸化的热点关注方向随时间的变动及研究前沿。描述统计表明:海洋酸化概念提出的这十多年来,涉及海洋酸化的研究文献数量呈现激增的态势,研究学科交叉明显,海洋酸化对珊瑚礁的影响是这十年来的重点研究领域。从基于关键词的知识图谱可以看到,在海洋酸化研究初期(2004—2009年),研究内容主要分为两个部分,一是海洋酸化对海洋生物(尤其是珊瑚礁生物及浮游植物)及生态系统的影响;二是对海洋酸化现象的认识;中期(2010—2015年),研究内容与初期相似,研究重点往海洋生物上倾斜,同时有新的热点研究区域和研究方向的出现;近期(2016年以后),海洋酸化对海洋生物影响的研究依旧占据着主流研究方向。对基于突变分析得到的当前(2018年2月)海洋酸化研究的热点关注的文献分析发现,当前海洋酸化的研究存在以下5个前沿方向:(1)在探究海洋酸化与生物的关系之时需结合多因子讨论;(2)探索生物在海洋酸化下的内在应对机制;(3)海洋酸化影响下的生物响应的综合评估及预测;(4)探索海洋酸化对海洋生态系统的影响;(5)对海洋酸化概念的挑战——海洋酸化形成原因的探索。  相似文献   

8.
The Paris Conference of Parties (COP21) agreement renewed momentum for action against climate change, creating the space for solutions for conservation of the ocean addressing two of its largest threats: climate change and ocean acidification (CCOA). Recent arguments that ocean policies disregard a mature conservation research field and that protected areas cannot address climate change may be oversimplistic at this time when dynamic solutions for the management of changing oceans are needed. We propose a novel approach, based on spatial meta‐analysis of climate impact models, to improve the positioning of marine protected areas to limit CCOA impacts. We do this by estimating the vulnerability of ocean ecosystems to CCOA in a spatially explicit manner and then co‐mapping human activities such as the placement of renewable energy developments and the distribution of marine protected areas. We test this approach in the NE Atlantic considering also how CCOA impacts the base of the food web which supports protected species, an aspect often neglected in conservation studies. We found that, in this case, current regional conservation plans protect areas with low ecosystem‐level vulnerability to CCOA, but disregard how species may redistribute to new, suitable and productive habitats. Under current plans, these areas remain open to commercial extraction and other uses. Here, and worldwide, ocean conservation strategies under CCOA must recognize the long‐term importance of these habitat refuges, and studies such as this one are needed to identify them. Protecting these areas creates adaptive, climate‐ready and ecosystem‐level policy options for conservation, suitable for changing oceans.  相似文献   

9.
Research efforts have intensified to foresee the prospects for marine biomes under climate change and anthropogenic drivers over varying temporal and spatial scales. Parallel with these efforts is the utilization of terminology, such as ‘ocean acidification’ (OA) and ‘ocean deoxygenation’ (OD), that can foster rapid comprehension of complex processes driving carbon dioxide (CO2) and oxygen (O2) concentrations in the global ocean and thus, are now widely used in discussions within and beyond academia. However, common usage of the terms ‘acidification’ and ‘deoxygenation’ alone are subjective and, without adequate contextualization, have the potential to mislead inferences over drivers that may ultimately shape the future state of marine ecosystems. Here we clarify the usage of the terms OA and OD as global, climate change‐driven processes and discuss the various attributes of elevated CO2 and reduced O2 syndromes common to coastal ecosystems. We support the use of the existing terms ‘coastal acidification’ and ‘coastal deoxygenation’ because they help differentiate the sometimes rapid and extreme nature of CO2 and O2 syndromes in coastal ecosystems from the global, climate change‐driven processes of OA and OD. Given the complexity and breadth of the processes involved in altering CO2 and O2 concentrations across marine ecosystems, we provide a workflow to enable contextualization and clarification of the usage of existing terms and highlight the close link between these two gases across spatial and temporal scales in the ocean. These distinctions are crucial to guide effective communication of research within the scientific community and guide policymakers responsible for intervening on the drivers to secure desirable future ocean states.  相似文献   

10.
《植物生态学报》1958,44(5):553
全球草地占据30%左右的陆地面积, 在全球气候变化、碳氮及养分循环、保持水土、调节畜牧业生产等方面具有重要的作用。目前草地的主要利用方式之一就是放牧, 不同的牲畜种类、放牧强度、年限、历史和制度等, 会影响草地植物群落、生物多样性及土壤微生物, 进而影响草地生态系统结构、功能和过程。该文围绕放牧对草地生态系统结构、功能和过程的影响, 1)回顾了20世纪50年代到现在各个历史阶段放牧对草地生态系统影响的研究; 2)利用文献计量分析的方法, 剖析了放牧对草地影响研究的热点内容、重要区域和关键词等; 3)阐明了放牧对草地植物生长、群落特征、碳氮及养分循环、生产力及土壤质量等的各方面影响的研究进展及国内相关研究的优势及存在的主要问题和不足; 4)基于上述分析, 从草地放牧精准管理、经典假说验证、放牧和全球变化研究相结合等方面, 提出未来研究的前沿方向和优先领域。该文在系统总结放牧对草地生态系统影响的研究进展、研究优势及存在问题的基础上, 提出未来的研究应与全球变化相结合, 为我国的草地放牧生态学研究、适应性管理和可持续利用等提供科学基础。  相似文献   

11.
The impacts of climate change in coastal marine systems   总被引:14,自引:0,他引:14  
Anthropogenically induced global climate change has profound implications for marine ecosystems and the economic and social systems that depend upon them. The relationship between temperature and individual performance is reasonably well understood, and much climate-related research has focused on potential shifts in distribution and abundance driven directly by temperature. However, recent work has revealed that both abiotic changes and biological responses in the ocean will be substantially more complex. For example, changes in ocean chemistry may be more important than changes in temperature for the performance and survival of many organisms. Ocean circulation, which drives larval transport, will also change, with important consequences for population dynamics. Furthermore, climatic impacts on one or a few 'leverage species' may result in sweeping community-level changes. Finally, synergistic effects between climate and other anthropogenic variables, particularly fishing pressure, will likely exacerbate climate-induced changes. Efforts to manage and conserve living marine systems in the face of climate change will require improvements to the existing predictive framework. Key directions for future research include identifying key demographic transitions that influence population dynamics, predicting changes in the community-level impacts of ecologically dominant species, incorporating populations' ability to evolve (adapt), and understanding the scales over which climate will change and living systems will respond.  相似文献   

12.
Climate change effects on marine ecosystems include impacts on primary production, ocean temperature, species distributions, and abundance at local to global scales. These changes will significantly alter marine ecosystem structure and function with associated socio‐economic impacts on ecosystem services, marine fisheries, and fishery‐dependent societies. Yet how these changes may play out among ocean basins over the 21st century remains unclear, with most projections coming from single ecosystem models that do not adequately capture the range of model uncertainty. We address this by using six marine ecosystem models within the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish‐MIP) to analyze responses of marine animal biomass in all major ocean basins to contrasting climate change scenarios. Under a high emissions scenario (RCP8.5), total marine animal biomass declined by an ensemble mean of 15%–30% (±12%–17%) in the North and South Atlantic and Pacific, and the Indian Ocean by 2100, whereas polar ocean basins experienced a 20%–80% (±35%–200%) increase. Uncertainty and model disagreement were greatest in the Arctic and smallest in the South Pacific Ocean. Projected changes were reduced under a low (RCP2.6) emissions scenario. Under RCP2.6 and RCP8.5, biomass projections were highly correlated with changes in net primary production and negatively correlated with projected sea surface temperature increases across all ocean basins except the polar oceans. Ecosystem structure was projected to shift as animal biomass concentrated in different size‐classes across ocean basins and emissions scenarios. We highlight that climate change mitigation measures could moderate the impacts on marine animal biomass by reducing biomass declines in the Pacific, Atlantic, and Indian Ocean basins. The range of individual model projections emphasizes the importance of using an ensemble approach in assessing uncertainty of future change.  相似文献   

13.
Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO2. However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high‐resolution global ocean model run under the IPCC RCP 8.5 scenario. The ¼ degree model resolution allows improved regional realism of the ocean circulation beyond that of available CMIP5‐class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present‐day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification.  相似文献   

14.
Ocean warming ‘hotspots’ are regions characterized by above‐average temperature increases over recent years, for which there are significant consequences for both living marine resources and the societies that depend on them. As such, they represent early warning systems for understanding the impacts of marine climate change, and test‐beds for developing adaptation options for coping with those impacts. Here, we examine five hotspots off the coasts of eastern Australia, South Africa, Madagascar, India and Brazil. These particular hotspots have underpinned a large international partnership that is working towards improving community adaptation by characterizing, assessing and projecting the likely future of coastal‐marine food resources through the provision and sharing of knowledge. To inform this effort, we employ a high‐resolution global ocean model forced by Representative Concentration Pathway 8.5 and simulated to year 2099. In addition to the sea surface temperature, we analyse projected stratification, nutrient supply, primary production, anthropogenic CO2‐driven ocean acidification, deoxygenation and ocean circulation. Our simulation finds that the temperature‐defined hotspots studied here will continue to experience warming but, with the exception of eastern Australia, may not remain the fastest warming ocean areas over the next century as the strongest warming is projected to occur in the subpolar and polar areas of the Northern Hemisphere. Additionally, we find that recent rapid change in SST is not necessarily an indicator that these areas are also hotspots of the other climatic stressors examined. However, a consistent facet of the hotspots studied here is that they are all strongly influenced by ocean circulation, which has already shown changes in the recent past and is projected to undergo further strong change into the future. In addition to the fast warming, change in local ocean circulation represents a distinct feature of present and future climate change impacting marine ecosystems in these areas.  相似文献   

15.
《植物生态学报》1958,44(5):565
全球变化已经通过提高水温、改变降水格局和水流状况、促进物种入侵、增加极端事件, 对不同的淡水生态系统造成严重的威胁。该文将全球变化背景下淡水生态学的主要研究内容归纳为: (1)全球变化各要素对个体、种群、群落及至生态系统水平的影响; (2)全球变化过程中生态系统生物地球化学循环的改变; (3)淡水生态系统对全球变化的适应对策。最近10-15年淡水生态系统与全球变化研究快速发展, 取得的重要突破有: (1)阐明淡水生态系统结构与功能对全球气候变化尤其是水温升高的响应过程与机制; (2)揭示淡水生态系统(湿地、湖泊、河流等)是全球碳循环的重要组成部分, 在全球变化因素的影响下呈现有机碳埋藏减少和矿化速率提高。今后的研究中, 需要进一步加强对淡水生态系统全要素的系统观测与整合; 开展以“河流”为介质耦合多系统的碳输运和转化过程研究; 强化基础理论研究揭示淡水生态系统对全球变化的适应机制。  相似文献   

16.
Human population density within 100 km of the sea is approximately three times higher than the global average. People in this zone are concentrated in coastal cities that are hubs for transport and trade – which transform the marine environment. Here, we review the impacts of three interacting drivers of marine urbanization (resource exploitation, pollution pathways and ocean sprawl) and discuss key characteristics that are symptomatic of urban marine ecosystems. Current evidence suggests these systems comprise spatially heterogeneous mosaics with respect to artificial structures, pollutants and community composition, while also undergoing biotic homogenization over time. Urban marine ecosystem dynamics are often influenced by several commonly observed patterns and processes, including the loss of foundation species, changes in biodiversity and productivity, and the establishment of ruderal species, synanthropes and novel assemblages. We discuss potential urban acclimatization and adaptation among marine taxa, interactive effects of climate change and marine urbanization, and ecological engineering strategies for enhancing urban marine ecosystems. By assimilating research findings across disparate disciplines, we aim to build the groundwork for urban marine ecology – a nascent field; we also discuss research challenges and future directions for this new field as it advances and matures. Ultimately, all sides of coastal city design: architecture, urban planning and civil and municipal engineering, will need to prioritize the marine environment if negative effects of urbanization are to be minimized. In particular, planning strategies that account for the interactive effects of urban drivers and accommodate complex system dynamics could enhance the ecological and human functions of future urban marine ecosystems.  相似文献   

17.
海洋酸化和海洋变暖是当下及未来海洋生物及其依存生态系统面临的主要环境压力和生态问题。当前,海洋生物早期发育气候变化生物学的研究主要集中于海洋酸化的影响,为了更好地探究海洋气候变化对海洋生物的影响,有必要研究海洋酸化和变暖联合作用下海洋生物的生态响应。以受精后24天的刺参稚参为研究对象,通过模拟当前和本世纪末海洋环境,观察海水酸化和升温对刺参稚参在体色发育关键时期生长、发育及体色变化的影响。实验设置对照组(大连近海水温,pCO2400 mg·kg^-1)、升温组(对照组水温+2℃,pCO2400 mg·kg^-1)、酸化组(对照组水温,pCO21000 mg·kg^-1)、酸化升温组(对照组水温+2℃,pCO21000 mg·kg^-1)。结果表明:温度升高2℃能够显著提高稚参发育速率,体色变化加快;pH值降低0.23个单位显著延迟稚参生长,体色变化减缓,个体间体重差异变大;升温2℃能抵消pH降低0.23个单位对稚参生长和发育的负面影响;较长时间的海水酸化和升温胁迫能够使稚参逐渐适应,稚参表现出一定的耐受性。  相似文献   

18.
《植物生态学报》1958,44(5):543
随着人口的增长和人类社会的发展, 土地利用与土地覆盖变化已经是不可避免。土地利用与土地覆盖变化不仅对生态系统的要素、结构和功能产生深远的影响, 也会对全球变化产生反馈作用。针对土地利用与土地覆盖变化的过程、驱动机制以及在各个方面可能产生的生态环境效应的科学研究已经全面开展。该文综述了土地利用与土地覆盖变化对气候、土壤、生物地球化学循环、生物多样性以及区域生态环境等影响方面的研究进展, 并提出了相关研究的前沿方向展望。随着新技术的不断发展, 学者们将更多地侧重预测未来全球变化背景下的土地利用与土地覆盖变化趋势、合理性以及适应性, 为可持续发展提供基础资料和理论依据。  相似文献   

19.
《植物生态学报》1958,44(5):475
Due to huge consumption of fossil fuels and chemical fertilizers, substantial amount of anthropogenic reactive nitrogen (N) has been released into the environment. Therefore, N deposition has gradually increased worldwide and become one of the most important issues of global change. China has been a N deposition hotspot, and N deposition is projected to last long duration, which poses serious threats to ecosystem stability and functionality. In this synthesis paper, we summarized the impacts of N deposition on aboveground vegetation, soil microorganisms and biogeochemical cycling of major elements (carbon, N and phosphorus) in terrestrial ecosystems by outlining the progresses in the research field during the past 40 years. Results indicate that the accumulation of reactive N compounds induced by N deposition alters the soil environment, ecological stoichiometric balance and species co-occurrence patterns, thereby changing biodiversity and ecosystem functions. The rates, forms and duration of N deposition and the homeostasis of biosystem together with abiotic environments determine the direction and extent of the ecosystem response to N deposition. Through analysing local and foreign studies in this research area, we explore the weaknesses of relevant research that are being conducted in China. To advance the basic research on and risk management of N deposition, we propose the establishment of a N deposition monitoring and research network across the country with consideration of different ecosystems to promote regional and global risk assessments. Future research should highlight the combined multiple factors with N deposition and conduct direct and in-depth mechanism studies.  相似文献   

20.
For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Whereas the ecological impacts of impaired olfactory-mediated behaviour may be similar between freshwater and marine ecosystems, the underlying mechanisms are quite distinct. In acidified freshwater, molecular change to chemical cues along with reduced olfaction sensitivity appear to be the primary causes of olfactory-mediated behavioural impairment. By contrast, experiments simulating future ocean acidification suggest that interference of high CO2 with brain neurotransmitter function is the primary cause for olfactory-mediated behavioural impairment in fish. Different physico-chemical characteristics between marine and freshwater systems are probably responsible for these distinct mechanisms of impairment, which, under globally rising CO2 levels, may lead to strikingly different consequences to olfaction. While fluctuations in pH may occur in both freshwater and marine ecosystems, marine habitat will remain alkaline despite future ocean acidification caused by globally rising CO2 levels. In this synthesis, we argue that ecosystem-specific mechanisms affecting olfaction need to be considered for effective management and conservation practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号