首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1429篇
  免费   50篇
  国内免费   86篇
  2023年   26篇
  2022年   18篇
  2021年   30篇
  2020年   38篇
  2019年   31篇
  2018年   50篇
  2017年   25篇
  2016年   32篇
  2015年   39篇
  2014年   81篇
  2013年   165篇
  2012年   50篇
  2011年   79篇
  2010年   56篇
  2009年   73篇
  2008年   110篇
  2007年   81篇
  2006年   84篇
  2005年   80篇
  2004年   72篇
  2003年   46篇
  2002年   40篇
  2001年   26篇
  2000年   16篇
  1999年   20篇
  1998年   7篇
  1997年   15篇
  1996年   11篇
  1995年   8篇
  1994年   21篇
  1993年   15篇
  1992年   15篇
  1991年   6篇
  1990年   8篇
  1989年   4篇
  1988年   11篇
  1987年   5篇
  1986年   5篇
  1985年   11篇
  1984年   8篇
  1983年   8篇
  1982年   7篇
  1981年   5篇
  1980年   6篇
  1979年   5篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1974年   4篇
  1973年   2篇
排序方式: 共有1565条查询结果,搜索用时 15 毫秒
1.
A series of 1-aryl-2-(((6-aryl)pyrimidin-4-yl)amino)ethanols have been found to be competitive inhibitors of fatty acid amide hydrolase (FAAH). One member of this class, JNJ-40413269, was found to have excellent pharmacokinetic properties, demonstrated robust central target engagement, and was efficacious in a rat model of neuropathic pain.  相似文献   
2.
Alexander disease (AxD) is a rare and fatal neurodegenerative disorder caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). In this report, a mouse model of AxD (GFAPTg;Gfap+/R236H) was analyzed that contains a heterozygous R236H point mutation in murine Gfap as well as a transgene with a GFAP promoter to overexpress human GFAP. Using label-free quantitative proteomic comparisons of brain tissue from GFAPTg;Gfap+/R236H versus wild-type mice confirmed upregulation of the glutathione metabolism pathway and indicated proteins were elevated in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which had not been reported previously in AxD. Relative protein-level differences were confirmed by a targeted proteomics assay, including proteins related to astrocytes and oligodendrocytes. Of particular interest was the decreased level of the oligodendrocyte protein, 2-hydroxyacylsphingosine 1-beta-galactosyltransferase (Ugt8), since Ugt8-deficient mice exhibit a phenotype similar to GFAPTg;Gfap+/R236H mice (e.g., tremors, ataxia, hind-limb paralysis). In addition, decreased levels of myelin-associated proteins were found in the GFAPTg;Gfap+/R236H mice, consistent with the role of Ugt8 in myelin synthesis. Fabp7 upregulation in GFAPTg;Gfap+/R236H mice was also selected for further investigation due to its uncharacterized association to AxD, critical function in astrocyte proliferation, and functional ability to inhibit the anti-inflammatory PPAR signaling pathway in models of amyotrophic lateral sclerosis (ALS). Within Gfap+ astrocytes, Fabp7 was markedly increased in the hippocampus, a brain region subjected to extensive pathology and chronic reactive gliosis in GFAPTg;Gfap+/R236H mice. Last, to determine whether the findings in GFAPTg;Gfap+/R236H mice are present in the human condition, AxD patient and control samples were analyzed by Western blot, which indicated that Type I AxD patients have a significant fourfold upregulation of FABP7. However, immunohistochemistry analysis showed that UGT8 accumulates in AxD patient subpial brain regions where abundant amounts of Rosenthal fibers are located, which was not observed in the GFAPTg;Gfap+/R236H mice.  相似文献   
3.
Enantiopure epoxides are high value-added synthons for the production of pharmaceuticals, agrochemicals, as well as versatile fine chemicals and have broad scope of market demand for their applications. A major challenge in conventional organic synthesis is to generate such compounds in high enantiopurity with reasonable yield. Among possible chemical and biological technologies for enantiopure epoxide preparation, enzymatic kinetic resolution has been paid much attention with respect to its high enantioselectivity. Epoxide hydrolase (EH) has shown promising characteristics for the preparation of enantiopure epoxides and vicinal diols during enantioselective hydrolysis of racemic epoxides. EH is readily available from microbial resources thus it is being employed for biohydrolysis of a variety of epoxides. Recent technical progress in EH-catalyzed enantioselective hydrolysis is summarized in terms of exploration of novel EH, its functional improvement, high throughput assay, and preparative scale resolution process.  相似文献   
4.
Effective chemotherapy for solid cancers is challenging due to a limitation in permeation that prevents anticancer drugs from reaching the center of the tumor, therefore unable to limit cancer cell growth. To circumvent this issue, we planned to apply the drugs directly at the center by first collapsing the outer structure. For this, we focused on cell–cell communication (CCC) between N-glycans and proteins at the tumor cell surface. Mature N-glycans establish CCC; however, CCC is hindered when numerous immature N-glycans are present at the cell surface. Inhibition of Golgi mannosidases (GMs) results in the transport of immature N-glycans to the cell surface. This can be employed to disrupt CCC. Here, we describe the molecular design and synthesis of an improved GM inhibitor with a non-sugar mimic scaffold that was screened from a compound library. The synthesized compounds were tested for enzyme inhibition ability and inhibition of spheroid formation using cell-based methods. Most of the compounds designed and synthesized exhibited GM inhibition at the cellular level. Of those, AR524 had higher inhibitory activity than a known GM inhibitor, kifunensine. Moreover, AR524 inhibited spheroid formation of human malignant cells at low concentration (10 µM), based on the disruption of CCC by GM inhibition.  相似文献   
5.
This study is aimed to reveal the molecular incidence of organophosphorus insecticides degradation during the fermentation of Korean food yeulmu-mulkimchi. To this end, two opdA and opdE which consist of 930 and 894 bp that encode 309 and 297 amino acids, respectively, were cloned from the Leuconostoc mesenteroides WCP307 strain that was isolated from chlorpyrifos (CP) impregnated kimchi. The Escherichia coli that harbored the opdA and opdE genes depleted a CP concentration of 72% and 83%, respectively, in an M9 medium after 6 days. The OpdA and OpdE enzymes molecular weights were estimated to be approximately 35 and 33 kDa and showed optimal activities at 30 °C with a pH of 7.0 and 6.0, respectively. However, the mutated OpdA (Ser128 Ala128) and OpdE (Ser129 Ala129) enzymes had no activities on OP insecticides and ρ-nitrophenyl butyrate substrates. In addition, the OpdA and OpdE enzymes showed profound catalytic activities against cadusafos, comnaphos, diazinon, dyfonate, ethoprophos, fenamiphos, methylparathion, and parathion insecticides. Therefore, it is assumed that OpdA and OpdE enzymes detoxified the pesticides contaminated kimchi composition like Chinese cabbages during fermentation. Furthermore, the OpdA and OpdE enzymes augmented the diversity of new LAB-opd enzymes group in nature.  相似文献   
6.
Enzymes catalyzing the hydrolysis of casein, N-benzoyl-l-tyrosine ethyl ester, p-nitrophenyl acetate, and l-leucyl-β-naphthylamine hydrochloride were found in extracts of the excretory gland cells of Stephanurus dentatus.  相似文献   
7.
Epoxide hydrolase, StEH1, shows hysteretic behavior in the catalyzed hydrolysis of trans-2-methylstyrene oxide (2-MeSO)1. Linkage between protein structure dynamics and catalytic function was probed in mutant enzymes in which surface-located salt-bridging residues were substituted. Salt-bridges at the interface of the α/β-hydrolase fold core and lid domains, as well as between residues in the lid domain, between Lys179-Asp202, Glu215-Arg41 and Arg236-Glu165 were disrupted by mutations, K179Q, E215Q, R236K and R236Q. All mutants displayed enzyme activity with styrene oxide (SO) and 2-MeSO when assayed at 30 °C. Disruption of salt-bridges altered the rates for isomerization between distinct Michaelis complexes, with (1R,2R)-2-MeSO as substrate, presumably as a result of increased dynamics of involved protein segments. Another indication of increased flexibility was a lowered thermostability in all mutants. We propose that the alterations to regioselectivity in these mutants derive from an increased mobility in protein segments otherwise stabilized by salt bridging interactions.  相似文献   
8.
The key hydrolytic enzymes of the endocannabinoid system, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), are potential targets for various therapeutic applications. In this paper, we present more extensively the results of our previous work on piperazine and piperidine carboxamides and carbamates as FAAH and MAGL inhibitors. The best compounds of these series function as potent and selective MAGL/FAAH inhibitors or as dual FAAH/MAGL inhibitors at nanomolar concentrations. This study revealed that MAGL inhibitors should comprise leaving-groups with a conjugate acid pKa of 8–10, while diverse leaving groups are tolerated for FAAH inhibitors.  相似文献   
9.
Abstract Most isolates of Salmonella contain two unrelated UDP-sugar hydrolases, one of which, encoded by the ushB gene, is inner membrane-associated. Previous studies showed that this enzyme contains a typical N-terminal signal peptide; the evidence also indicated, however, that this peptide is not cleaved, and serves to anchor the UshB protein in the inner membrane. In this report, we present strong evidence that this is indeed the case by using ushB'-'blaM fusions to demonstrate that this signal peptide is capable of localising β-lactamase to the inner membrane. We also present evidence that UshB is located on the exterior (periplasmic) side of the membrane, and hence has an 'N-terminus inside/C-terminus outside' membrane orientation, consistent with a role in the degradation of external substrates.  相似文献   
10.
Dienelactone hydrolase (DLH), an enzyme from the β-ketoadipate pathway, catalyzes the hydrolysis of dienelactone to maleylacetate. Our inhibitor binding studies suggest that its substrate, dienelactone, is held in the active site by hydrophobic interactions around the lactone ring and by the ion pairs between its carboxylate and Arg-81 and Arg-206. Like the cysteine/serine proteases, DLH has a catalytic triad (Cys-123, His-202, Asp-171) and its mechanism probably involves the formation of covalently bound acyl intermediate via a tetrahedral intermediate. Unlike the proteases, DLH seems to protonate the incipient leaving group only after the collapse of the first tetrahedral intermediate, rendering DLH incapable of hydrolyzing amide analogues of its ester substrate. In addition, the triad His probably does not protonate the leaving group (enolate) or deprotonate the water for deacylation; rather, the enolate anion abstracts a proton from water and, in doing so, supplies the hydroxyl for deacylation. © 1993 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号