首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The model system for the proton transfer on the amide atom of the substrate leaving group based on the existence of "charge relay system" in the serine type proteases was analysed by the CNDO/2 method. The unfitness of this model to explain the action mechanism of serine proteases was shown. The model system for proton transfer with the water molecule as the intermediate acceptor of the Ser-195 proton was suggested and analysed by the same method. The acylation activation barrier of this system was shown to localize on the stage of synchronous transfer of the Ser-195 alcoholic proton and the water molecule proton hydrogen bound to the His-57 N epsilon 2-atom on the water molecule oxygen atom and the N epsilon 2-atom, respectively. The protonation of substrate in the case of the model system with the water molecule as the intermediate acceptor of proton was demonstrated to begin before the completion of the tetrahedral intermediate substance and the protonated from of the tetrahedral intermediate was shown to form only. A hypothesis considering the role of this water molecule as the nucleophilic reagent on the deacylation stage is presented.  相似文献   

2.
Refined structure of dienelactone hydrolase at 1.8 A   总被引:3,自引:0,他引:3  
The structure of dienelactone hydrolase (DLH) from Pseudomonus sp. B13, after stereochemically restrained least-squares refinement at 1.8 A resolution, is described. The final molecular model of DLH has a conventional R value of 0.150 and includes all but the carboxyl-terminal three residues that are crystallographically disordered. The positions of 279 water molecules are included in the final model. The root-mean-square deviation from ideal bond distances for the model is 0.014 A and the error in atomic co-ordinates is estimated to be 0.15 A. DLH is a monomeric enzyme containing 236 amino acid residues and is a member of the beta-ketoadipate pathway found in bacteria and fungi. DLH is an alpha/beta protein containing seven helices and eight strands of beta-pleated sheet. A single 4-turn 3(10)-helix is seen. The active-site Cys123 residues at the N-terminal end of an alpha-helix that is peculiar in its consisting entirely of hydrophobic residues (except for a C-terminal lysine). The beta-sheet is composed of parallel strands except for strand 2, which gives rise to a short antiparallel region at the N-terminal end of the central beta-sheet. The active-site cysteine residue is part of a triad of residues consisting of Cys123, His202 and Asp171, and is reminiscent of the serine/cysteine proteases. As in papain and actinidin, the active thiol is partially oxidized during X-ray data collection. The positions of both the reduced and the oxidized sulphur are described. The active site geometry suggests that a change in the conformation of the native thiol occurs upon diffusion of substrate into the active site cleft of DLH. This enables nucleophilic attack by the gamma-sulphur to occur on the cyclic ester substrate through a ring-opening reaction.  相似文献   

3.
Despite the availability of many experimental data and some modeling studies, questions remain as to the precise mechanism of the serine proteases. Here we report molecular dynamics simulations on the acyl-enzyme complex and the tetrahedral intermediate during the deacylation step in elastase catalyzed hydrolysis of a simple peptide. The models are based on recent crystallographic data for an acyl-enzyme intermediate at pH 5 and a time-resolved study on the deacylation step. Simulations were carried out on the acyl enzyme complex with His-57 in protonated (as for the pH 5 crystallographic work) and deprotonated forms. In both cases, a water molecule that could provide the nucleophilic hydroxide ion to attack the ester carbonyl was located between the imidazole ring of His-57 and the carbonyl carbon, close to the hydrolytic position assigned in the crystal structure. In the "neutral pH" simulations of the acyl-enzyme complex, the hydrolytic water oxygen was hydrogen bonded to the imidazole ring and the side chain of Arg-61. Alternative stable locations for water in the active site were also observed. Movement of the His-57 side-chain from that observed in the crystal structure allowed more solvent waters to enter the active site, suggesting that an alternative hydrolytic process directly involving two water molecules may be possible. At the acyl-enzyme stage, the ester carbonyl was found to flip easily in and out of the oxyanion hole. In contrast, simulations on the tetrahedral intermediate showed no significant movement of His-57 and the ester carbonyl was constantly located in the oxyanion hole. A comparison between the simulated tetrahedral intermediate and a time-resolved crystallographic structure assigned as predominantly reflecting the tetrahedral intermediate suggests that the experimental structure may not precisely represent an optimal arrangement for catalysis in solution. Movement of loop residues 216-223 and P3 residue, seen both in the tetrahedral simulation and the experimental analysis, could be related to product release. Furthermore, an analysis of the geometric data obtained from the simulations and the pH 5 crystal structure of the acyl-enzyme suggests that since His-57 is protonated, in some aspects, this crystal structure resembles the tetrahedral intermediate.  相似文献   

4.
The force driving the conversion from the acyl intermediate to the tetrahedral intermediate in the deacylation reaction of serine proteases remains unclear. The crystal structure of 6‐guanidinohexanoyl trypsin was determined at pH 7.0, near the optimum reaction pH, at 1.94 Å resolution. In this structure, three water molecules are observed around the catalytic site. One acts as a nucleophile to attack the acyl carbonyl carbon while the other two waters fix the position of the catalytic water through a hydrogen bond. When the acyl carbonyl oxygen oscillates thermally, the water assumes an appropriate angle to catalyze the deacylation. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Members of the serine family of site-specific DNA recombinases use an unusual constellation of amino acids to catalyze the formation and resolution of a covalent protein-DNA intermediate. A recent high resolution structure of the catalytic domain of Sin, a particularly well characterized family member, provided a detailed view of the catalytic site. To determine how the enzyme might protonate and stabilize the 3′O leaving group in the strand cleavage reaction, we examined how replacing this oxygen with a sulfur affected the cleavage rate by WT and mutant enzymes. To facilitate direct comparison of the cleavage rates, key experiments used suicide substrates that prevented religation after cleavage. The catalytic defect associated with mutation of one of six highly conserved arginine residues, Arg-69 in Sin, was partially rescued by a 3′ phosphorothiolate substrate. We conclude that Arg-69 has an important role in stabilizing the 3′O leaving group and is the prime candidate for the general acid that protonates the 3′O, in good agreement with the position it occupies in the high resolution structure of the active site of Sin.  相似文献   

6.
Abstract

Pancreatic lipase and acetylcholinesterase are both serine esterases. Their X-ray structures reveal a similar overall fold, but no sequence homology can be detected. A catalytic triad like in the trypsin family of serine proteases consisting of serine, histidine and aspartate (glutamate in acetylcholinesterase) suggests mechanistic similarities. Models of the transition states of the substrate cleavage have been built and possible catalytic pathways were examined. The model that could produce a consistent pathway throughout the reactions had a transition state of the opposite handedness compared to trypsin. These models could be used to rationalise binding modes of inhibitors of both enzymes. The lipase inhibitor tetrahydrolipstatin (THL) contains a gamma-lactone which is opened by the catalytic serine; the alcohol leaving group prohibits deacylation by locking the pathway for incoming water and thus inactivates the enzyme. Carbamate inhibitors of acetylcholinesterase transfer a carbamoyl group to the serine-OH which deacylates slowly. These observations can be used as a starting point for the discovery of new classes of inhibitors.  相似文献   

7.
There have been several studies indicating that hydrolysis reactions of fatty acid esters catalyzed by lipases proceed through an acyl-enzyme intermediate typical of serine proteases. In particular, one careful kinetic study with the physiologically important enzyme lipoprotein lipase (LPL) is consistent with rate-limiting deacylation of such an intermediate. To observe the spectrum of acyl-enzyme and study the mechanism of LPL-catalyzed hydrolysis of substrate, we have used a variety of furylacryloyl substrates including 1,2-dipalmitoyl-3-[(beta-2-furylacryloyl)triacyl]glyceride (DPFATG) to study the intermediates formed during the hydrolysis reaction catalyzed by the enzyme. After isolation and characterization of the molecular weight of adipose LPL, we determined its extinction coefficient at 280 nm to quantitate the formation of any acyl-enzyme intermediate formed during substrate hydrolysis. We observed an intermediate at low pH during the enzyme-catalyzed hydrolysis of (furylacryloyl)imidazole. This intermediate builds early in the reaction when a substantial amount of substrate has hydrolyzed but no product, furylacrylate, has been formed. The acyl-enzyme has a lambda max = 305 nm and a molar extinction coefficient of 22,600 M-1 cm-1; these parameters are similar to those for furylacryloyl esters including the serine ester. These data provide the first spectral evidence for a serine acyl-enzyme in lipase-catalyzed reactions. The LPL hydrolysis reaction is base catalyzed, exhibiting two pKa values; the more acidic of these is 6.5, consistent with base catalysis by histidine. The biphasic rates for substrate disappearance or product appearance and the absence of leaving group effect indicate that deacylation of intermediate is rate limiting.  相似文献   

8.
T M Dougherty  W W Cleland 《Biochemistry》1985,24(21):5875-5880
pH profiles have been determined for the reactions catalyzed by pyruvate kinase between pyruvate and MgATP and between phosphoenolpyruvate and MgADP. V, V/KMgATP, and V/Kpyruvate all decrease below a pK of 8.3 and above one of 9.2. The group with pK = 8.3 is probably a lysine that removes the proton from pyruvate during enolization, while the pK of 9.2 is that of water coordinated to enzyme-bound Mg2+. The fact that this pK shows in all three pH profiles shows that pyruvate forms a predominantly second sphere complex and cannot replace hydroxide to form the inner sphere complex that results in enolization and subsequent phosphorylation. On the basis of the displacement of the pK of the acid-base catalytic group in its V/K profile, phosphoenolpyruvate is a sticky substrate, reacting to give pyruvate approximately 5 times faster than it dissociates. The V/K profile for the slow substrate phosphoenol-alpha-ketobutyrate shows the pK of 8.3 for the acid-base catalytic group in its correct position, but this group must be protonated so that it can donate a proton to the intermediate enolate following phosphoryl transfer. The secondary phosphate pK of the substrate is seen in this V/K profile as well as in the pKi profile for phosphoglycolate (but not in those for glycolate O-sulfate or oxalate), showing a preference for the trianion for binding. The chemical mechanism with the natural substrates thus appears to involve phosphoryl transfer between MgADP and a Mg2+-bound enolate with metal coordination of the enolate serving to make it a good leaving group.  相似文献   

9.
D Pathak  G Ashley  D Ollis 《Proteins》1991,9(4):267-279
The active site of dienelactone hydrolase (DLH), a microbial enzyme of the beta-ketoadipate pathway, has been conclusively located using a combination of crystallographic, biochemical, and genetic techniques. DLH hydrolyzes a dienelactone to maleylacetate and has esterase activity on p-nitrophenyl acetate and trans-cinnamoyl imidazole. The identification of Cys-123 as containing the essential thiol confirms the localization of the active site as suggested by the crystal structure of DLH, and disproves an earlier hypothesis regarding its location. Two mutant proteins have been engineered in which Cys-123 has been converted to a serine (C123S DLH) and an alanine (C123A DLH), respectively. C123S DLH (Km = 9900 +/- 2300 microM; Vmax = 4.4 +/- 0.8 mumol/min-mg) displays burst kinetics with p-nitrophenyl acetate and is 10% as active as DLH (Km = 170 +/- 7 microM; Vmax = 21.1 +/- 0.4 mumol/min-mg). C123A DLH is inactive. The structures of DLH, C123S DLH, and C123A DLH have been refined at 1.8, 2.2, and 2.0 A, respectively. Comparison of the structures of these proteins demonstrates that the only differences between them are centered at residue 123. The structures of the active sites of DLH, papain, and subtilisin are similar and are suggestive of the three enzymes having evolved convergently to similar active sites with similar enzymic mechanisms.  相似文献   

10.
The overall chemical mechanism of the reaction catalyzed by the hydrolytic aldehyde dehydrogenases (ALDHs) involves three main steps: (1) nucleophilic attack of the thiol group of the catalytic cysteine on the carbonyl carbon of the aldehyde substrate; (2) hydride transfer from the tetrahedral thiohemiacetal intermediate to the pyridine ring of NAD(P)(+); and (3) hydrolysis of the resulting thioester intermediate (deacylation). Crystal structures of different ALDHs from several organisms-determined in the absence and presence of bound NAD(P)(+), NAD(P)H, aldehydes, or acid products-showed specific details at the atomic level about the catalytic residues involved in each of the catalytic steps. These structures also showed the conformational flexibility of the nicotinamide half of the cofactor, and of the catalytic cysteinyl and glutamyl residues, the latter being the general base that activates the hydrolytic water molecule in the deacylation step. The architecture of the ALDH active site allows for this conformational flexibility, which, undoubtedly, is crucial for catalysis in these enzymes. Focusing in the deacylation step of the ALDH-catalyzed reaction, here we review and systematize the crystallographic evidence of the structural features responsible for the conformational flexibility of the catalytic glutamyl residue, and for the positioning of the hydrolytic water molecule inside the ALDH active site. Based on the analysis of the available crystallographic data and of energy-minimized models of the thioester reaction intermediate, as well as on the results of theoretical calculations of the pK(a) of the carboxyl group of the catalytic glutamic acid in its three different conformations, we discuss the role that the conformational flexibility of this residue plays in the activation of the hydrolytic water. We also propose a critical participation in the water activation process of the peptide bond to which the catalytic glutamic acid in the intermediate conformation is hydrogen bonded.  相似文献   

11.
The reaction mechanism of acetylcholine hydrolysis by acetylcholinesterase, including both acylation and deacylation stages from the enzyme-substrate (ES) to the enzyme-product (EP) molecular complexes, is examined by using an ab initio type quantum mechanical – molecular mechanical (QM/MM) approach. The density functional theory PBE0/aug-6–31+G* method for a fairly large quantum part trapped inside the native protein environment, and the AMBER force field parameters in the molecular mechanical part are employed in computations. All reaction steps, including the formation of the first tetrahedral intermediate (TI1), the acylenzyme (EA) complex, the second tetrahedral intermediate (TI2), and the EP complex, are modeled at the same theoretical level. In agreement with the experimental rate constants, the estimated activation energy barrier of the deacylation stage is slightly higher than that for the acylation phase. The critical role of the non-triad Glu202 amino acid residue in orienting lytic water molecule and in stabilizing the second tetrahedral intermediate at the deacylation stage of the enzymatic process is demonstrated. Figure The computed energy diagram for the reaction path from the enzyme – substrate complex (ES) to the enzyme-product complex (EP).  相似文献   

12.
In the acylation reaction of serine proteases the effect of amino acid residues on the geometrical change of the catalytic site from Michaelis to tetrahedral state was studied by using ab initio molecular orbital calculations. Amino acid residues in the catalytic site and the peptide substrate were calculated as a quantum mechanical region, and all the other amino acid residues and the calcium ion were included in the calculation as the electrostatic effects. The effects of Asp102, Asp194, N-terminus and the oxyanion binding site are large. The oxyanion binding site directly stabilizes the tetrahedral substrate. Asp102 stabilizes the enzyme intermediate, interacting with the protonated His57 residue. In order to elucidate the roles of Asp102 and the oxyanion binding site, energy decomposition analyses were done for the intermolecular interactions. The contribution of Asp102 and the oxyanion binding site to the decrease of energy in the geometrical change is due to the electrostatic effect. The energies of the proton shuttle from Ser195 Oγ to the leaving group of the substrate were calculated for amide and ester substrate models.  相似文献   

13.
Using the semi-empirical MNDO/H method several systems simulating the reaction of tetrahedral intermediate formation in the active site of serine proteases have been studied. The role played by elements of the "catalytic triad" in increasing the reactivity of serine hydroxyl has been discussed. The formation of a strong hydrogen bond between His and Asp was shown to be important in lowering the activation energy in the reaction of Ser with substrate. The change in position of the proton located between Ser and His and between His and Asp was analysed. The influence of substrate distortion on the energy of intermediate formation has been considered.  相似文献   

14.
Kubiak RJ  Yue X  Hondal RJ  Mihai C  Tsai MD  Bruzik KS 《Biochemistry》2001,40(18):5422-5432
Phosphatidylinositol-specific phospholipase C (PI-PLC) catalyzes the cleavage of the P-O bond in phosphatidylinositol via intramolecular nucleophilic attack of the 2-hydroxyl group of inositol on the phosphorus atom. Our earlier stereochemical and site-directed mutagenesis studies indicated that this reaction proceeds by a mechanism similar to that of RNase A, and that the catalytic site of PI-PLC consists of three major components analogous to those observed in RNase A, the His32 general base, the His82 general acid, and Arg69 acting as a phosphate-activating residue. In addition, His32 is associated with Asp274 in forming a catalytic triad with inositol 2-hydroxyl, and His82 is associated with Asp33 in forming a catalytic diad. The focus of this work is to provide a global view of the mechanism, assess cooperation between various catalytic residues, and determine the origin of enzyme activation by the hydrophobic leaving group. To this end, we have investigated kinetic properties of Arg69, Asp33, and His82 mutants with phosphorothioate substrate analogues which feature leaving groups of varying hydrophobicity and pK(a). Our results indicate that interaction of the nonbridging pro-S oxygen atom of the phosphate group with Arg69 is strongly affected by Asp33, and to a smaller extent by His82. This result in conjunction with those obtained earlier can be rationalized in terms of a novel, dual-function triad comprised of Arg69, Asp33, and His82 residues. The function of this triad is to both activate the phosphate group toward the nucleophilic attack and to protonate the leaving group. In addition, Asp33 and His82 mutants displayed much smaller degrees of activation by the fatty acid-containing leaving group as compared to the wild-type (WT) enzyme, and the level of activation was significantly reduced for substrates featuring the leaving group with low pK(a) values. These results strongly suggest that the assembly of the above three residues into the fully catalytically competent triad is controlled by the hydrophobic interactions of the enzyme with the substrate leaving group.  相似文献   

15.
Peptide amidase (Pam), a hydrolytic enzyme that belongs to the amidase signature (AS) family, selectively catalyzes the hydrolysis of the C-terminal amide bond (CO-NH(2)) of peptides. The recent availability of the X-ray structures of Pam, fatty acid amide hydrolase, and malonamidase E2 has led to the proposal of a novel Ser-Ser-Lys catalytic triad mechanism for the amide hydrolysis by the AS enzymes. The molecular dynamics (MD) simulations using the CHARMM force field were performed to explore the catalytic mechanism of Pam. The 1.8 A X-ray crystal structure of Pam in complex with the amide analogue of chymostatin was chosen for the initial coordinates for the MD simulations. The five systems that were investigated are as follows: (i) enzyme.substrate with Lys123-NH(2), (ii) enzyme.substrate with Lys123-NH(3)(+), (iii) enzyme.substrate with Lys123-NH(3)(+) and Ser226-O(-), (iv) enzyme.transition state, and (v) enzyme.tetrahedral intermediate. Our data support the presence of the hydrogen bonding network among the catalytic triad residues, Ser226, Ser202, and Lys123, where Ser226 acts as the nucleophile and Ser202 bridges Ser226 and Lys123. The MD simulation supports the catalytic role of the crystallographic waters, Wat1 and Wat2. In all the systems that have been studied, the backbone amide nitrogens of Asp224 and Thr223 create an oxyanion hole by hydrogen bonding to the terminal amide oxygen of the substrate, and stabilize the oxyanion tetrahedral intermediate. The results from both our computational investigation and previously published experimental pH profile support two mechanisms. In a mechanism that is relevant at lower pH, the Lys123-NH(3)(+)-Ser202 dyad provides structural support to the catalytic residue Ser226, which in turn carries out a nucleophilic attack at the substrate amide carbonyl in concert with Wat1-mediated deprotonation and stabilization of the tetrahedral transition state by the oxyanion hole. In the mechanism operating at higher pH, the Lys123-NH(2)-Ser202 catalytic dyad acts as a general base to assist addition of Ser226 to the substrate amide carbonyl. The results from the MD simulation of the tetrahedral intermediate state show that both Ser202 and Lys123 are possible candidates for protonation of the leaving group, NH(2), to form the acyl-enzyme intermediate.  相似文献   

16.
The conformation of the staphylococcal nuclease-bound metal-dTdA complex, previously determined by NMR methods [Weber, D.J., Mullen, G.P., Mildvan, A.S. (1991) Biochemistry 30:7425-7437] was docked into the X-ray structure of the enzyme-Ca(2+)-3',5'-pdTp complex [Loll, P.J., Lattman, E.E. (1989) Proteins: Struct., Funct., Genet. 5:183-201] by superimposing the metal ions, taking into account intermolecular nuclear Overhauser effects from assigned aromatic proton resonances of Tyr-85, Tyr-113, and Tyr-115 to proton resonances of the leaving dA moiety of dTdA, and energy minimization to relieve small overlaps. The proton resonances of the Phe, Tyr, and Trp residues of the enzyme in the ternary enzyme-La(3+)-dTdA complex were sequence specifically assigned by 2D phase-sensitive NOESY, with and without deuteration of the aromatic protons of the Tyr residues, and by 2D heteronuclear multiple quantum correlation (HMQC) spectroscopy and 3D NOESY-HMQC spectroscopy with 15N labeling. While resonances of most Phe, Tyr and Trp residues were unshifted by the substrate dTdA from those found in the enzyme-La(3+)-3',5'-pdTp complex and the enzyme-Ca(2+)-3',5'-pdTp complex, proton resonances of Tyr-85, Tyr-113, Tyr-115, and Phe-34 were shifted by 0.08 to 0.33 ppm and the 15N resonance of Tyr-113 was shifted by 2.1 ppm by the presence of substrate. The optimized position of enzyme-bound dTdA shows the 5'-dA leaving group to partially overlap the inhibitor, 3',5'-pdTp (in the X-ray structure). The 3'-TMP moiety of dTdA points toward the solvent in a channel defined by Ile-18, Asp-19, Thr-22, Lys-45, and His-46. The phosphate of dTdA is coordinated by the metal, and an adjacent inner sphere water ligand is positioned to donate a hydrogen bond to the general base Glu-43 and to attack the phosphorus with inversion. Arg-35 and Arg-87 donate monodentate hydrogen bonds to different phosphate oxygens of dTdA, with Arg-87 positioned to protonate the leaving 5'-oxygen of dA, thus clarifying the mechanism of hydrolysis. Model building of an additional 5'-dGMP onto the 3'-oxygen of dA placed this third nucleotide onto a surface cleft near residues Glu-80, Asp-83, Lys-84, and Tyr-115 with its 3'-OH group accessible to the solvent, thus defining the size of the substrate binding site as accommodating a trinucleotide.  相似文献   

17.
Dipeptidyl peptidase-IV (DPP-IV) is a serine protease with a signature Asp-His-Ser motif at the active site. Our pH data suggest that Gly-Pro-pNA cleavage catalyzed by DPP-IV is facilitated by an ionization of a residue with a pK of 7.2 +/- 0.1. By analogy to other serine proteases this pK is suggestive of His-Asp assisted Ser addition to the P1 carbonyl carbon of the substrate to form a tetrahedral intermediate. Solvent kinetic isotope effect studies yielded a D2Okcat/Km=2.9+/-0.2 and a D2Okcat=1.7+/-0.2 suggesting that kinetically significant proton transfers contribute to rate limitation during acyl intermediate formation (leaving group release) and hydrolysis. A "burst" of product release during pre steady-state Gly-Pro-pNA cleavage indicated rate limitation in the deacylation half-reaction. Nevertheless, the amplitude of the burst exceeded the enzyme concentration significantly (approximately 15-fold), which is consistent with a branching deacylation step. All of these data allowed us to better understand DPP-IV inhibition by saxagliptin (BMS-477118). We propose a two-step inhibition mechanism wherein an initial encounter complex is followed by covalent intermediate formation. Final inhibitory complex assembly (kon) depends upon the ionization of an enzyme residue with a pK of 6.2 +/- 0.1, and we assigned it to the catalytic His-Asp pair which enhances Ser nucleophilicity for covalent addition. An ionization with a pK of 7.9 +/- 0.2 likely reflects the P2 terminal amine of the inhibitor hydrogen bonding to Glu205/Glu206 in the enzyme active site. The formation of the covalent enzyme-inhibitor complex was reversible and dissociated with a koff of (5.5 +/- 0.4) x 10(-5) s(-1), thus yielding a Ki* (as koff/kon) of 0.35 nM, which is in good agreement with the value of 0.6 nM obtained from steady-state inhibition studies. Proton NMR spectra of DPP-IV showed a downfield resonance at 16.1 ppm. Two additional peaks in the 1H NMR spectra at 17.4 and 14.1 ppm were observed upon mixing the enzyme with saxagliptin. Fractionation factors (phi) of 0.6 and 0.5 for the 17.4 and 14.1 ppm peaks, respectively, are suggestive of short strong hydrogen bonds in the enzyme-inhibitor complex.  相似文献   

18.
Regulated cytosolic proteolysis is one of the key cellular processes ensuring proper functioning of a cell. M42 family proteases show a broad spectrum of substrate specificities, but the structural basis for such diversity of the substrate specificities is lagging behind biochemical data. Here we report the crystal structure of PepA from Streptococcus pneumoniae, a glutamyl aminopeptidase belonging to M42 family (SpPepA). We found that Arg-257 in the substrate binding pocket is strategically positioned so that Arg-257 can make electrostatic interactions with the acidic residue of a substrate at its N-terminus. Structural comparison of the substrate binding pocket of the M42 family proteases, along with the structure-based multiple sequence alignment, argues that the appropriate electrostatic interactions contribute to the selective substrate specificity of SpPepA.  相似文献   

19.
Although the subject of many studies, detailed structural information on aspects of the catalytic cycle of serine proteases is lacking. Crystallographic analyses were performed in which an acyl-enzyme complex, formed from elastase and a peptide, was reacted with a series of nucleophilic dipeptides. Multiple analyses led to electron density maps consistent with the formation of a tetrahedral species. In certain cases, apparent peptide bond formation at the active site was observed, and the electron density maps suggested production of a cis-amide rather than a trans-amide. Evidence for a cis-amide configuration was also observed in the noncovalent complex between elastase and an alpha1-antitrypsin-derived tetrapeptide. Although there are caveats on the relevance of the crystallographic data to solution catalysis, the results enable detailed proposals for the pathway of the acylation step to be made. At least in some cases, it is proposed that the alcohol of Ser-195 may preferentially attack the carbonyl of the cis-amide form of the substrate, in a stereoelectronically favored manner, to give a tetrahedral oxyanion intermediate, which undergoes N-inversion and/or C-N bond rotation to enable protonation of the leaving group nitrogen. The mechanistic proposals may have consequences for protease inhibition, in particular for the design of high energy intermediate analogues.  相似文献   

20.
Methylmalonate-semialdehyde dehydrogenase (MSDH) belongs to the CoA-dependent aldehyde dehydrogenase subfamily. It catalyzes the NAD-dependent oxidation of methylmalonate semialdehyde (MMSA) to propionyl-CoA via the acylation and deacylation steps. MSDH is the only member of the aldehyde dehydrogenase superfamily that catalyzes a β-decarboxylation process in the deacylation step. Recently, we demonstrated that the β-decarboxylation is rate-limiting and occurs before CoA attack on the thiopropionyl enzyme intermediate. Thus, this prevented determination of the transthioesterification kinetic parameters. Here, we have addressed two key aspects of the mechanism as follows: 1) the molecular basis for recognition of the carboxylate of MMSA; and 2) how CoA binding modulates its reactivity. We substituted two invariant arginines, Arg-124 and Arg-301, by Leu. The second-order rate constant for the acylation step for both mutants was decreased by at least 50-fold, indicating that both arginines are essential for efficient MMSA binding through interactions with the carboxylate group. To gain insight into the transthioesterification, we substituted MMSA with propionaldehyde, as both substrates lead to the same thiopropionyl enzyme intermediate. This allowed us to show the following: 1) the pK(app) of CoA decreases by ~3 units upon binding to MSDH in the deacylation step; and 2) the catalytic efficiency of the transthioesterification is increased by at least 10(4)-fold relative to a chemical model. Moreover, we observed binding of CoA to the acylation complex, supporting a CoA-binding site distinct from that of NAD(H).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号