首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   5篇
  国内免费   4篇
  2022年   4篇
  2021年   4篇
  2020年   6篇
  2019年   6篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   10篇
  2013年   13篇
  2012年   17篇
  2011年   6篇
  2010年   5篇
  2009年   13篇
  2008年   9篇
  2007年   14篇
  2006年   15篇
  2005年   9篇
  2004年   7篇
  2003年   12篇
  2002年   8篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1975年   1篇
排序方式: 共有192条查询结果,搜索用时 15 毫秒
1.
Administration of insulin (2 IU/kg, i.p.) produced a significant decrease (18%) in forebrain norepinephrine and a significant increase in the major metabolite of norepinephrine, 3-methoxy-4-hydroxyphenylglycol-sulfate (MOPEG-SO4, +19%) in rats. Streptozotocin-induced diabetes produced the opposite effects, resulting in an increase in forebrain norepinephrine (+17%) and a decrease in MOPEG-SO4 (-26%). In addition, insulin increased (+143%) and diabetes decreased (-41%) the turnover rate of norepinephrine, as measured by the rate of decrease of norepinephrine following inhibition of tyrosine hydroxylase by alpha-methyl-p-tyrosine. All of these effects in diabetic rats were reversed by insulin replacement therapy. These data are discussed within the context of mood disorders characteristic of diabetic patients.  相似文献   
2.
目的:探讨STZ诱导的糖尿病小鼠肾脏发生上皮-间质转分化(EMT)的情况。方法:将80只C57BL小鼠随机分为正常对照组(NC组)和糖尿病组(DM组),每组40只。DM组小鼠用1%STZ(streptozotocin,链脲佐菌素)溶液按60mg/kg体质量的剂量进行腹腔注射,每天1次,连续6天。NC组小鼠平行腹腔注射同等体积0.1mol/L的柠檬酸钠缓冲液。再将成模小鼠随机分为A、B批次,A批次用于动态观察生存率、小鼠体质量及随机血糖的监测;B批次用于在造模后第4、8、12周末观察肾组织的病理变化,并用Western blot、免疫荧光染色的方法观察肾组织中EMT标志蛋白α-SMA和E-cadherin的表达。结果:STZ诱导的糖尿病模型小鼠出现糖尿病典型症状如多饮、多尿等,血糖持续在高水平状态,体质量增长缓慢。在造模后12周末,DM组小鼠较NC组小鼠累积生存率显著降低,两组比较差异具有统计学意义(P0.001)。在造模后的第8周末,DM组小鼠肾脏出现明显的病理改变,到第12周末时,绝大部分肾小管上皮细胞被梭形的肌成纤维细胞取代,肾小球空泡,基底膜增厚。造模后的第4、8、12周末时,DM组小鼠E-cadherin表达量均显著低于NC组小鼠(P=0.004,0.026,0.004);而在第8和12周末时,DM组α-SMA表达量显著升高(P=0.009,0.015)。在第12周末,肾组织冰冻切片E-cadherin和α-SMA、免疫荧光染色结果与上述结果一致。结论:STZ诱导的糖尿病模型小鼠有较典型的糖尿病临床改变,且肾组织发生了EMT。  相似文献   
3.
高脂喂养联合链脲佐菌素注射的糖尿病大鼠模型特征   总被引:37,自引:3,他引:34  
目的观察高脂喂养联合低剂量STZ注射的SpragueDawley(SD)大鼠2型糖尿病模型的代谢特征、病理学以及胰岛分子生物学变化。方法4周龄雄性SD大鼠36只随机分为三组(1)正常对照组(Control)9只,普通饲料喂养。(2)高脂组(HighFatchow,HE)9只,高脂饲料喂养,为普通饲料中添加20%脂肪(猪油和蛋黄粉各50%)和20%蔗糖。(3)糖尿病组(DM)18只。喂养4周后腹腔注射STZ(40mg/kg)。所有大鼠做灌胃葡萄糖耐量(OGTT)试验。放免法测定血清胰岛素,免疫组化染色观察胰岛β细胞的形态学特点,彩色图像分析系统测定胰岛素表达量,RT-PCR测定胰腺β细胞胰岛素mRNA表达水平。结果糖尿病大鼠空腹血糖(FBG)、胰岛素水平(FINS)显著高于Control组和HE组大鼠(P<0.01),空腹血清甘油三酯(TG)和游离脂肪酸(FFA)水平显著高于Control组(P<0.05);胰岛β细胞吸光度(A)显著低于高脂组大鼠(P<0.05),降低11.6%。胰岛素免疫反应阳性区占胰岛百分比显著低于Control组和HE组,分别下降31.9%(P<0.05)和43.1%(P<0.01)。胰岛素mRNA表达水平显著低于HE组(P<0.05)。STZ注射后48h(基线值)大鼠FBG水平的分布情况为A组(FBG<10.0mmol/L)占7/18;B组(FBG10~19.9mmol/L)占5/18;C组(FBG≥20mmol/L)占6/18。STZ注射后9d的OGTT结果与基线值相比,B组OGTT值总体变化最小,A组FBG的变异最大,达到25%。结论高脂喂养联合低剂量STZ注射的糖尿病大鼠模型模拟2型糖尿病发生的主要病理生理过程,具有高血糖、高胰岛素血症以及血脂异常等基本特征。  相似文献   
4.
Cordyceps sinensis, a well-known traditional Chinese medicine, possesses anti-tumor, immunostimulant and antioxidant activities; however, the identities of active components have not been determined. In our previous study using antioxidant activity-guided fractionation [Li et al., 2003. A polysaccharide isolated from Cordyceps sinensis, a traditional Chinese medicine, protects PC12 cells against hydrogen peroxide-induced injury. Life Sci. 73, 2503-2513], a polysaccharide of molecular weight approximately 210kDa was isolated from cultured Cordyceps mycelia by ion-exchange and sizing chromatography. The isolated polysaccharide, named CSP-1, which has strong anti-oxidation activity, contains glucose, mannose and galactose in the ratio of 1:0.6:0.75. In the present study, we demonstrated the hypoglycemic effect of CSP-1 on normal and alloxan-diabetic mice and streptozotocin (STZ)-diabetic rats. The basal glucose level did not differ significantly among the normal mice. CSP-1 (at 200 and 400mg/kg body wt./day for 7 days, p.o.), however, significantly reduced the blood glucose level by 12.0+/-3.2% and 22.5+/-4.7% in normal mice, respectively (p<0.05). When administered at a dose of higher than 200mg/kg body wt. daily for 7 days, CSP-1 produced a significant drop in blood glucose level in both STZ-induced diabetic rats and alloxan-induced diabetic mice. The serum insulin levels in diabetic animals were also increased by administration of CSP-1 (p<0.05). CSP-1 with hypoglycemic properties increased circulating insulin level in diabetic animals, which suggests that CSP-1 may stimulate pancreatic release of insulin and/or reduce insulin metabolism.  相似文献   
5.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder resulting in cognitive decline and enhancement of oxidative loads in the brain. Flavonoids have been considered to exert human health benefits by anti-oxidant and anti-inflammatory properties. The present study is aimed to elucidate the neuroprotective effect of catechin hydrate (CH), a natural flavanoid with potential antioxidant and anti-inflammatory properties, on intracerebroventricular streptozotocin (ICV-STZ) induced neuronal loss and memory impairment. To test this hypothesis, male Wistar rats were pretreated with CH (10 and 20 mg/kg bwt) orally once daily for 21 days and then bilaterally injected with ICV-STZ (3 mg/kg bwt), while sham group rats receive the same volume of vehicle. After 2 weeks of ICV-STZ infusion, rats were tested for cognitive performance using Morris water maze (MWM) test and then sacrifice for biochemical and histopathological assays. CH was found to be successful in upregulating the antioxidant status and prevented the memory loss. The expression of choline acetyl transferase (ChAT) was decreased in ICV-STZ group and CH pretreatment increases the expression of ChAT. Moreover, inflammatory mediators like TNF-α, IL-1β levels and expression of iNOS were significantly attenuated by CH pretreatment. The study suggests that CH is effective in preventing memory loss, ameliorating the oxidative stress and might be beneficial for the treatment of sporadic dementia of Alzheimer’s type (SDAT).  相似文献   
6.
Some parasitic helminths are known to protect their hosts from allergic and autoimmune disorders. Here, we tested the effects of a gastrointestinal nematode, Heligmosomoides polygyrus (Hp), on streptozotocin (STZ)-induced type 1 diabetes (T1D) in mice. Hp infection significantly suppressed hyperglycemia induced by multiple low-dose administration of STZ, but did not affect hyperglycemia induced by single high-dose administration of STZ. In the multiple low dose model, Hp infection prevented a decrease in pancreatic islet size. The augmentation of TNF-α and IL-1β expression in the pancreas was abrogated by Hp infection. The genetic absence of IL-10 or STAT6 did not abrogate the anti-hyperglycemic effect of Hp. Hp has a suppressive effect on immune mechanism-mediated experimental T1D via Th2 polarization-independent mechanisms.  相似文献   
7.
The present study was aimed to evaluate the effect of olive (Olea europaea) leaves extract on streptozotocin (STZ)-induced diabetic male rats. The experimental rats were divided into six groups. Rats of the first group were served as normal controls. Rats of the second group were diabetic control. The third and fourth groups were diabetic rats, treated with olive leaves extract at low and high doses respectively. The fifth and sixth groups were non diabetic rats, subjected to olive leaves extract at the same doses given to the third and fourth groups respectively. The minimum of body weigh gain was noted in diabetic rats of the second group. the levels of serum glucose, insulin, total protein, albumin, triglycerides, cholesterol, low density lipoprotein cholesterol (LDL-C), very low density lipoprotein cholesterol (VLDL-C), creatine kinase (CK), lactate dehydrogenase (LDH) and malondialdehyde (MDA) were significantly increased, while the levels of high density lipoprotein cholesterol (HDL-C), superoxide dismutase, (SOD) glutathione (GSH) and catalase (CAT) were statistically decreased in diabetic rats of the second group. The levels of liver insulin receptor substrate 1 (IRS1) and insulin receptor A (IRA) were significantly declined in diabetic rats of the second group. The diabetic pancreatic sections from diabetic rats of the second group showed several histopathological changes. Administration of low and high doses of olive leaves extract improved the observed physiological, molecular and histopathological alterations. Collectively, the obtained results confirmed that the protective effects of olive leaves extract are attributed to the antioxidant activities of olive leaves extract and its active constituents.  相似文献   
8.
探讨TSP1表达在糖尿病视网膜病变中的作用和机制,为治疗和预防糖尿病视网膜病变提供新的实验和理论依据。用链脲佐菌素(STZ)腹腔注射建立糖尿病模型8周后,采用免疫组织化学、RT-PCR及实时荧光定量PCR法,分析TSP1在早期链尿佐菌素诱导的糖尿病SD大鼠视网膜中的表达。结果显示在早期糖尿病大鼠的视网膜表面血管、神经节细胞层、内外核层中均有明显的TSP1表达,糖尿病视网膜组TSP1 mRNA表达要高于对照组,其中实时荧光定量PCR CT值的结果显示糖尿病组TSP1 mRNA表达量较对照组要高约3.48倍,二组间差别有显著性意义(P<0.01),提示TSP1在视网膜组织中的表达与糖尿病视网膜病变的发生密不可分,TSP1表达的增加可能在糖尿病视网膜病变的发生和发展中起重要作用。  相似文献   
9.
It is well established that NADH/NAD+ redox balance is heavily perturbed in diabetes, and the NADH/NAD+ redox imbalance is a major source of oxidative stress in diabetic tissues. In mitochondria, complex I is the only site for NADH oxidation and NAD+ regeneration and is also a major site for production of mitochondrial reactive oxygen species (ROS). Yet how complex I responds to the NADH/NAD+ redox imbalance and any potential consequences of such response in diabetic pancreas have not been investigated. We report here that pancreatic mitochondrial complex I showed aberrant hyperactivity in either type 1 or type 2 diabetes. Further studies focusing on streptozotocin (STZ)-induced diabetes indicate that complex I hyperactivity could be attenuated by metformin. Moreover, complex I hyperactivity was accompanied by increased activities of complexes II to IV, but not complex V, suggesting that overflow of NADH via complex I in diabetes could be diverted to ROS production. Indeed in diabetic pancreas, ROS production and oxidative stress increased and mitochondrial ATP production decreased, which can be attributed to impaired pancreatic mitochondrial membrane potential that is responsible for increased cell death. Additionally, cellular defense systems such as glucose 6-phosphate dehydrogenase, sirtuin 3, and NQO1 were found to be compromised in diabetic pancreas. Our findings point to the direction that complex I aberrant hyperactivity in pancreas could be a major source of oxidative stress and β cell failure in diabetes. Therefore, inhibiting pancreatic complex I hyperactivity and attenuating its ROS production by various means in diabetes might serve as a promising approach for anti-diabetic therapies.  相似文献   
10.
Objective: To examine the effect of galangin on hyperglycemia-mediated oxidative stress in streptozotocin (STZ)-induced diabetic rats.

Methods: Diabetes was induced by intraperitoneal administration of low-dose STZ (40?mg/kg body weight (BW)) into male albino Wistar rats. Galangin (8?mg/kg BW) or glibenclamide (600?µg/kg BW) was given orally, once daily for 45 days to normal and STZ-induced diabetic rats.

Results: Diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes. The levels of insulin and non-enzymatic antioxidants (vitamin C, vitamin E, reduced glutathione) and the activity of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase (GST)) were decreased significantly in diabetic control rats. These altered plasma glucose, insulin, lipid peroxidation products, enzymatic and non-enzymatic antioxidants ions were reverted to near-normal level after the administration of galangin and glibenclamide.

Conclusion: The present study shows that galangin decreased oxidative stress and increased antioxidant status in diabetic rats, which may be due to its antidiabetic and antioxidant potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号