首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  国内免费   1篇
  2022年   1篇
  2018年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2002年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
2.
Modes of branching of appressoria on conidial germ tubes of 36 Erysiphe spp. were studied. Only unlobed appressoria, termed alobatus pattern, were seen in E. lonicerae, E. magnifica and E. symphoricarpi. Viewed from above with light or scanning electron microscopes, other species had ± irregular lobing, but from below in the plane of contact with the substrate successive dichotomous branchings at 120° were seen to produce a five-lobed appressorium within 6 h. Each division produced a temporarily dormant outward-facing lobe and an inward limb that continued growth and division to form the axis of curved, hooked, single- or double-headed symmetrical or asymmetrical structures in a helicoid cyme-like pattern. Outlines of extracellular material after removal of germinated conidia confirmed this manner of branching. After 36 h some lobes re-divided forming botryose or jigsaw patterns even extending with extra appressoria to form candelabra-like structures. Conidia developed only one true germ tube; rarely secondary unswollen tubes emerged from spare shoulders or ends. The same true germ tubes developed initially on host surfaces, where secondary tubes and/or extensions from appressorial lobes grew into colony-forming hyphae. Lobed appressoria of Neoerysphe and Phyllactinia also branched at 120°. Podosphaera xanthii exhibited a simpler branching pattern.  相似文献   
3.
A new species of Gesneriaceae, Paraboea trisepala W.H.Chen & Y.M.Shui, from a karst cave in Guangxi, China is described and illustrated. The new species differs from other species of Paraboea by its three‐lobed calyx. Variation in flower and inflorescence architecture was observed under cultivation. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 681–688.  相似文献   
4.
 The inflorescence development in Whytockia has been studied in order to explore the developmental basis for inflorescence architecture. The developmental pattern of the pair-flowered cyme in Whytockia basically conforms to that of most members in Gesneriaceae. However, the additional flower beside the terminal one in Whytockia is not equivalent to the frontal flower as in other Gesneriaceae because the former is located in the front-lateral position while the latter is in the front-median position. Also, the zigzag monochasial branching system in Whytockia represents the consecutive front-lateral branches rather than the lateral branches as in other Gesneriaceae. The inflorescence in Whytockia is flowering in a basipetal sequence, and its seemingly acropetal flowering sequence is due to the vigorous development of the consecutive front-lateral branches. In addition, the inflorescence of Whytockia does not represent the basic unit of the inflorescence in Epithemateae, and it is derived as compared to that of Rhynchoglossum. The development relationships of the inflorescence between Whytockia and its allies in Epithemateae are discussed on the basis of developmental and comparative evidence. Received February 15, 2002; accepted September 17, 2002 Published online: December 11, 2002  相似文献   
5.
外来物种黄顶菊花器官分化的初步研究   总被引:2,自引:0,他引:2  
利用扫描电镜(SEM)观察了黄顶菊(Flaveria bidentis(L.)Kuntz)花序发育过程中蝎尾状聚伞花序、头状花序和小花的形成.黄顶菊的花序由主轴及一至三级分枝组成,各级分枝交互对生,形成方式相同.植株主轴和侧枝顶端的每个花序由3~6个蝎尾状聚伞花序密集而成;每一蝎尾状聚伞花序由5~15个头状花序组成;每一头状花序中有4~11枚小花.小花分化顺序为5个花冠原基、5个雄蕊原基和2个心皮原基.2007年,天津地区黄顶菊的花期是7月下旬到9月下旬.7月中旬,花序和花器官原基不断形成并分化,至花器官成熟经历的时间约15 d.  相似文献   
6.
为了揭示植物花的空间布局与开花动态的调节机制以及避免同株异花传粉的生态学策略,该研究对铁破锣[Beesia calthifolia (Maxim.) Ulbr.]花序形态结构、开花动态和传粉生物学进行了观察分析。结果表明:(1)铁破锣花序结构设计巧妙,由3朵花组成一个聚伞花序单元并依次排列在主花序轴上,且花序轴上聚伞花序之间距离较远。(2)铁破锣通过单个聚伞花序顶花先开,通常只有6~8朵聚伞花序的顶花同时开放,而且总状花序从基部到顶部逐次开放,从而使得大量聚集单花的花序达到尽量少开花。(3)铁破锣花白色,花粉是访花昆虫的仅有诱物,纤细巴蚜蝇(Baccha maculata)是铁破锣的主要传粉昆虫,这种昆虫能够以花丝为着力点取食花粉,通常在一个花序上取食一朵单花后很快飞向另外一个花序的花。研究认为,铁破锣花序的空间设计和开花的时间序列动态减少了昆虫访问同株异花的可能性。  相似文献   
7.
Anton Weber 《Annals of botany》2013,112(8):1577-1595

Background and Aims

In the Lamiales, indeterminate thyrses (made up of axillary cymes) represent a significant inflorescence type. However, it has been largely overlooked that there occur two types of cymes: (1) ordinary cymes, and (2) ‘pair-flowered cymes’ (PFCs), with a flower pair (terminal and front flower) topping each cyme unit. PFCs are unique to the Lamiales and their distribution, origin and phylogeny are not well understood.

Methods

The Lamiales are screened as to the occurrence of PFCs, ordinary cymes and single flowers (constituting racemic inflorescences).

Key Results

PFCs are shown to exhibit a considerable morphological and developmental diversity and are documented to occur in four neighbouring taxa of Lamiales: Calceolariaceae, Sanango, Gesneriaceae and Plantaginaceae. They are omnipresent in the Calceolariaceae and almost so in the Gesneriaceae. In the Plantaginaceae, PFCs are restricted to the small sister tribes Russelieae and Cheloneae (while the large remainder has single flowers in the leaf/bract axils; ordinary cymes do not occur). Regarding the origin of PFCs, the inflorescences of the genus Peltanthera (unplaced as to family; sister to Calceolariaceae, Sanango and Gesneriaceae in most molecular phylogenies) support the idea that PFCs have originated from paniculate systems, with the front-flowers representing remnant flowers.

Conclusions

From the exclusive occurrence of PFCs in the Lamiales and the proximity of the respective taxa in molecular phylogenies it may be expected that PFCs have originated once, representing a synapomorphy for this group of taxa and fading out within the Plantaginaceae. However, molecular evidence is ambiguous. Depending on the position of Peltanthera (depending in turn on the kind and number of genes and taxa analysed) a single, a double (the most probable scenario) or a triple origin appears conceivable.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号