首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   1篇
  国内免费   3篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2016年   3篇
  2015年   5篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   7篇
  2010年   4篇
  2009年   10篇
  2008年   12篇
  2007年   6篇
  2006年   3篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1995年   1篇
  1984年   1篇
排序方式: 共有84条查询结果,搜索用时 250 毫秒
1.
We have reported that nanowell array (NWA) can enhance electrochemical detection of molecular binding events by controlling the binding sites of the captured molecules. Using NWA biosensor based amperometric analysis, we have detected biological macromolecules such as DNA, protein or aptamers at low concentrations. In this research, we developed an impedimetric immunosensor based on wafer-scale NWA for electrochemical detection of stress-induced-phosphoprotein-1 (STIP-1). In order to develop NWA sensor through the cost-effective combination of high-throughput nanopattern, the NWA electrode was fabricated on Si wafer by krypton-fluoride (KrF) stepper semiconductor process. Finally, 12,500,000 ea nanowell with a 500 nm diameter was fabricated on 4 mm × 2 mm substrate. Next, by using these electrodes, we measured impedance to quantify antigen binding to the immunoaffinity layer. The limit of detection (LOD) of the NWA was improved about 100-fold compared to milli-sized electrodes (4 mm × 2 mm) without an NWA. These results suggest that wafer-scale NWA immunosensor will be useful for biosensing applications because their interface response is appropriate for detecting molecular binding events.  相似文献   
2.
Therapeutic ultrasound was administered to patients suffering from bone fracture with FDA approval. Bone and cartilage are piezoelectric materials. To investigate the effects of piezoelectricity on the cells of chondrogenic lineage, we applied ultrasound stimulation on an AT-cut quartz coverslip to generate electric field fluctuations. The bone-marrow-derived mesenchymal stem cells (BMMSC) and primary chondrocytes were cultured on either glass or quartz coverslips for ultrasound stimulation. The cells were immunofluorescent-labeled for the assessment of cell arrangement and ciliary orientation. Ultrasound and piezoelectricity both stimulate cell migration and disrupt ciliary orientation induced by directional migration. In particular, piezoelectric effects on cell rearrangement can be abolished by the inhibitor specifically targeting atypical Protein kinase C zeta (PKCζ). Our findings shed light on the possibility of cellular modulation by using piezoelectric manipulation.  相似文献   
3.
A comparative study was performed to evaluate the signal amplification strategies in electrochemical affinity sensing, which included the direct electron transfer and diffusible-group mediated electron transfer between label enzymes that were specifically bound to target proteins and chemically modified electrode surfaces. As a platform surface for affinity recognition reactions, a double functionalized poly(amido amine) dendrimer monolayer that was modified with ferrocene and biotin groups was constructed on a gold surface. With the chemically modified electrode, a model affinity sensing with avidin was investigated. The advantages of adopting the diffusible-group mediated signaling strategy were demonstrated in terms of signal sensitivity and stability.  相似文献   
4.
The possibility of obtaining from any antibody a fluorescent conjugate which responds to the binding of the antigen by a variation of its fluorescence, would be of great interest in the analytical sciences and for the construction of protein chips. This possibility was explored with antibody mAbD1.3 directed against hen egg white lysozyme. Rules of design were developed to identify the residues of the antibody to which a fluorophore could be chemically coupled, after changing them to cysteine by mutagenesis. These rules were based on: the target residue belonging to a topological neighbourhood of the antigen in the structure of the complex between antibody and antigen; its absence of functional importance for the interaction with the antigen; and its solvent accessibility in the structure of the free antibody. Seventeen conjugates between the single-chain variable fragment scFv of mAbD1.3 and an environment-sensitive fluorophore were constructed. For six of the ten residues which fully satisfied the design rules, the relative variation of the fluorescence intensity between the free and bound states of the conjugate was comprised between 12 and 75% (in non-optimal buffer), and the affinity of the conjugate for lysozyme remained unchanged relative to the parental scFv. In contrast, such results were true for only one of the seven residues which failed to satisfy one of the rules and were used as controls. One of the conjugates was studied in more detail. Its fluorescence increased proportionally to the concentration of lysozyme in a nanomolar range, up to 90% in a defined buffer, and 40% in serum. This increase was specific for hen egg lysozyme and it was not observed with a closely related protein, turkey egg lysozyme. The residues which gave operational conjugates (six in V(L) and one in V(H)), were located in the immediate vicinity of residues which are functionally important, along the sequence of FvD1.3. The results suggest rules of design for constructing antigen-sensitive fluorescent conjugates from any antibody, in the absence of structural data.  相似文献   
5.
Tissue engineering strategies rely on suitable membranes and scaffolds, providing the necessary physicochemical stimuli to specific cells. This review summarizes the main results on piezoelectric polymers, in particular poly(vinylidene fluoride), for muscle and bone cell culture. Further, the relevance of polymer microstructure and surface charge on cell response is demonstrated. Together with the necessary biochemical cues, the proper design of piezoelectric polymers can open the way to novel and more reliable tissue engineering strategies for cells in which electromechanical stimuli are present in their environment.  相似文献   
6.
In this study, a novel sensitive electrochemiluminescence (ECL) immunosensor was constructed by carboxyl graphene (GR) for enhancing luminol–O2 system emission. Here, carboxyl GR was used to enhance the ECL intensity of luminol that had excellent electron transfer ability and good solubility. The sensing platform was constructed by depositing carboxyl GR on electrodes and immobilizing antibodies on the surface of carboxyl GR through amidation. The specific immunoreaction between α-fetoprotein (AFP) and antibodies resulted in a decrease of ECL intensity, and the intensity decreased linearly with AFP concentrations in the range of 5 pg ml−1 to 14 ng ml−1 with a detection limit of 2.0 pg ml−1. The proposed immunosensor exhibits high specificity, good reproducibility, and longtime stability. It may become a promising technique for protein detection.  相似文献   
7.
Picloram, a herbicide widely used for broadleaf weed control, is persistent and mobile in soil and water with adverse health and environmental effects. It is important to develop a sensitive method for accurate detection of trace picloram in the environment. In this article, a type of ordered three-dimensional (3D) gold (Au) nanoclusters obtained by two-step electrodeposition using the spatial obstruction/direction of the polycarbonate membrane is reported. Bovine serum albumin (BSA)-picloram was immobilized on the 3D Au nanoclusters by self-assembly, and then competitive immunoreaction with picloram antibody and target picloram was executed. The horseradish peroxidase (HRP)-labeled secondary antibody was applied for enzyme-amplified amperometric measurement. The electrodeposited Au nanoclusters built direct electrical contact and immobilization interface with protein molecules without postmodification and positioning. Under the optimal conditions, the linear range for picloram determination was 0.001-10 μg/ml with a correlation coefficient of 0.996. The detection and quantification limits were 5.0 × 10−4 and 0.0021 μg/ml, respectively. Picloram concentrations in peach and excess sludge supernatant extracts were tested by the proposed immunosensor, which exhibited good precision, sensitivity, selectivity, and storage stability.  相似文献   
8.
Yin J  Wei W  Liu X  Kong B  Wu L  Gong S 《Analytical biochemistry》2007,360(1):99-104
A biosensor based on bovine serum albumin (BSA) for the detection of lead (Pb(2+)) ion was developed and characterized. BSA was immobilized onto a colloidal Au-modified piezoelectric quartz crystal (PQC) as a biosensor for the detection of Pb(2+) ion by piezoelectric quartz crystal impedance (PQCI). Calibration curves for the quantification of Pb(2+) ion showed excellent linearity throughout the concentration range from 1.0 x 10(-7) to 3.0 x 10(-9)mol/L. The interaction between the Pb(2+) ions and the sensor chip is influenced significantly by the pH of the reaction buffer, and the optimal pH for the experiment was 5.4. Under the optimal conditions, the detection limit of 1.0 x 10(-9)mol/L for Pb(2+) was obtained. Kinetic parameters of the Pb(2+)-BSA interactions were also determined by using this chip. The sensor chip could be regenerated for use by dipping in the ethylenediaminetetraacetic acid (EDTA) solution for approximately 2h, and the chip was used to detect Pb(2+) ion for eight times without obvious signal attenuation.  相似文献   
9.
Most biosensing techniques are indirect, slow, and require labeling. Even though silicon-based microcantilever sensors are sensitive and label-free, they are not suitable for in-liquid detection. More recently lead zirconate titanate (PZT) thin-film-based microcantilevers are shown to be sensitive and in situ. However, they require microfabrication and must be electrically insulated. In this study, we show that highly sensitive, in situ, Salmonella typhimurium detection can be achieved at 90% relative humidity using a lead zirconate titanate (PZT)/gold-coated glass cantilever 0.7 mm long with a non-piezoelectric 2.7 mm long gold-coated glass tip by partially dipping the gold-coated glass tip in the suspension at any depth without electrically insulating the PZT. In particular, we showed that at 90% relative humidity and with a dipping depth larger than 0.8 mm the PZT/gold-coated glass cantilever showed virtually no background resonance frequency up-shift due to water evaporation and exhibited a mass detection sensitivity of Δmf = −5 × 10−11 g/Hz. The concentration sensitivities of this PZT/gold-coated glass cantilever were 1 × 103 and 500 cells/ml in 2 ml of liquid with a 1 and 1.5 mm dipping depth, respectively, both more than two orders of magnitude lower than the infectious dose and more than one order of magnitude lower than the detection limit of a commercial Raptor sensor.  相似文献   
10.
目的:为研制检测H5亚型禽流感的压电免疫传感器。方法:用巯基丙酸在镀银电极石英晶体自组装巯基丙酸单分子膜再通过N-乙基-N′(-3-二甲氨基)丙基碳化二亚胺盐酸(EDC)和N-羟基琥珀酰亚胺(NHS)偶联抗H5亚型禽流感病毒的特异性单抗构建传感器芯片,建立了可以检测H5亚型禽流感病毒的免疫传感器。结果:结果表明,该法具有较好的特异性,不与H9亚型流感病毒和NDV反应;检测灵敏度达到10-50个EID50。结论:本文结果为检测禽流感病毒免疫传感器的进一步深入研究奠定了基础,这为其它相关病毒的监测提供了一种新途径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号