首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   3篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2018年   3篇
  2015年   4篇
  2014年   12篇
  2013年   15篇
  2012年   6篇
  2011年   16篇
  2010年   15篇
  2009年   16篇
  2008年   8篇
  2007年   12篇
  2006年   11篇
  2005年   10篇
  2004年   13篇
  2003年   8篇
  2002年   3篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   5篇
  1982年   6篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
排序方式: 共有209条查询结果,搜索用时 78 毫秒
1.
In adult rats, a significant portion of brain ethanolamine glycerophospholipids are synthesized by a pathway involving phosphatidylserine decarboxylase, a mitochondrial enzyme. We have now examined whether this enzyme plays a particularly prominent role during development. Activities for both phosphatidylserine decarboxylase and succinate dehydrogenase (another mitochondrial enzyme) were determined in brain homogenates from rats 5 days of age to adulthood. Succinate dehydrogenase activity, expressed on a per unit brain protein basis, increased markedly during development. This pattern has been reported previously and is as expected from the postnatal increase in oxidative metabolism. In contrast, phosphatidylserine decarboxylase activity decreased 40% from 5 to 30 days of age. The apparent Km for brain phosphatidylserine decarboxylase was 85 microM in both young (8- and 20-day-old) and adult animals. Parallel studies in vivo were carried out to determine the contribution of the phosphatidylserine decarboxylase pathway, relative to pathways utilizing ethanolamine directly, to the synthesis of brain ethanolamine glycerophospholipids. Animals were injected intracranially with a mixture of L-[G-3H]serine and [2-14C]ethanolamine and incorporation into the base moieties of the phospholipids determined. The 3H/14C ratio of ethanolamine glycerophospholipids decreased about 50% during development. Our studies in vitro and in vivo both suggest that phosphatidylserine decarboxylase plays a significant role in the synthesis of brain ethanolamine glycerophospholipids at all ages, although it is relatively more prominent early in development.  相似文献   
2.
Received: 18 April 1996/Revised: 26 June 1996  相似文献   
3.
Basis for Phospholipid Incorporation into Peripheral Nerve Myelin   总被引:1,自引:1,他引:0  
Abstract: To characterize the mechanism(s) for targeting of phospholipids to peripheral nerve myelin, we examined the kinetics of incorporation of tritiated choline-, glycerol-, and ethanolamine-labeled phospholipids into four subfractions: microsomes, mitochondria, myelin-like material, and purified myelin at 1, 6, and 24 h after precursors were injected into sciatic nerves of 23–24-day-old rats. As validation of the fractionation scheme, a lag (> 1 h) in the accumulation of labeled phospholipids in the myelin-containing subfractions was found. This lag signifies the time between synthesis on organelles in Schwann cell cytoplasm and transport to myelin. In the present study, we find that sphingomyelin (choline-labeled) accumulated in myelin-rich subfractions only at 6 and 24 h, whereas phosphatidylserine (glycerol-labeled) and plasmalogen (ethanolamine-labeled) accumulated in the myelin-rich fractions by 1 h. The later phospholipids accumulate preferentially in the myelin-like fraction. These results are consistent with the notion that the targeting of sphingomyelin, a lipid present in the outer myelin leaflet, is different from the targeting of phosphatidylserine and ethanolamine plasmalogen, lipids in the inner leaflet. These findings are discussed in light of the possibility that sphingomyelin targeting is Golgi apparatus based, whereas phosphatidylserine and ethanolamine plasmalogen use a more direct transport system. Furthermore, the routes of phospholipid targeting mimic routes taken by myelin proteins P0 (Golgi) and myelin basic proteins (more direct).  相似文献   
4.
Mitochondria can synthesize phosphatidyl-ethanolamine (PE) through phosphatidylserine decarboxylase (PS decarboxylase) activity or can import this lipid from the endoplasmic reticulum. In this work, we studied the factors influencing the import of PE in brain mitochondria and its utilization for the assembly of mitochondrial membranes. Incubation of rat brain homogenate with [1-3H]ethanolamine resulted in the synthesis and distribution of 3H-PE to subcellular fractions. T-wenty-one percent of labeled PE was recovered in purified mitochondria. The import of PE in mitochondria was studied in a reconstituted system made of microsomes (donor particles) and purified mitochondria (acceptor particles). Ca+2 and nonspecific lipid transfer protein purified from liver tissue (nsL-TP) enhanced the translocation process. 3H-PE synthesized in membrane associated to mitochondria (MAM) could also translocate to mitochondria in the reconstituted system. Exposure of mitochondria to trinitrobenzensulfonic acid (TNBS) resulted in the reaction of more than 60% of 3H-PE imported from endoplasmic reticulum and of about 25% of 14C-PE produced in mitochondria by decarboxylation of 14C-PS. Moreover, the removal of the outer mitochondrial membrane by digitonin treatment, resulted in the loss of 3H-PE, but not 14C-PE. These results indicate that labeled PE imported in mitochondria is mainly localized in the outer mitochondrial membrane, whereas PE produced by PS decarboxylase activity is confined to the inner mitochondrial membrane. Phospholipase C hydrolyzed 25–30% of both PE radioactivity and mass of the outer mitochondrial membrane indicating an asymmetrical distribution of this lipid across the membrane.Mr. Carlo Ricci is thanked for his skillful technical assistance. This work has been supported by a grant from the Ministry of Education, Rome, Italy.  相似文献   
5.
Dynamic light scattering has been used to study the temperature dependence of Ca2+-induced fusion of phosphatidylserine vesicles and mixed vesicles containing phosphatidylserine and different phosphatidylcholines. The final vesicle size after Ca2+ and EDTA incubation serves as a measure of the extent of fusion. With phosphatidylserine vesicles, the extent of fusion shows a sharp maximum at an incubation temperature which depends on the Ca2+ concentration between 0.8 and 2 mM. The shift in the fusion peak temperature with Ca2+ concentration is similar to the typical shift in the phase transition temperature with divalent cation concentration in acidic phospholipids. The results suggest a direct correlation between the fusion peak temperature and the phase transition temperature in the presence of Ca2+ prior to fusion. With mixed vesicles containing up to 33% of a phosphatidylcholine in at least 2 mM Ca2+, the extent of fusion as a function of incubation temperature also shows a maximum. The fusion peak temperature is essentially independent of the quantity and type of phosphatidylcholine and the Ca2+ concentration, and identical to that with pure phosphatidylserine in excess Ca2+. The results imply that Ca2+-induced molecular segregation occurs first, and fusion subsequently takes place between pure phosphatidylserine domains.  相似文献   
6.
7.
Calcium-induced interaction of liposomes composed of pure phosphatidylserine (PS) has been studied using a rapid-mixing, rapid-freeze device. Freeze-fracture electron microscopy of this material revealed that liposomes react very rapidly after addition of calcium ions. After only 10 ms (the resolution of the technique) vesicle fusion was apparent. At the same time, however, vesicles also collapsed, and appeared as aggregates of flattened membranes. This may explain controversies which have arisen over vesicle fusion studied with more indirect methods.  相似文献   
8.
The haemagglutinating activity of the membrane-associated Schistosoma mansoni “agglutinin” is mainly due to acidic phospholipids, particularly phosphatidylinositol and phosphatidylserine. The role of these phospholipids in possible lipid-protein interactions in the host-parasite relationship is discussed.  相似文献   
9.
Type IV P-type ATPases (P4-ATPases) and CDC50 family proteins form a putative phospholipid flippase complex that mediates the translocation of aminophospholipids such as phosphatidylserine (PS) and phosphatidylethanolamine (PE) from the outer to inner leaflets of the plasma membrane. In Chinese hamster ovary (CHO) cells, at least eight members of P4-ATPases were identified, but only a single CDC50 family protein, CDC50A, was expressed. We demonstrated that CDC50A associated with and recruited P4-ATPase ATP8A1 to the plasma membrane. Overexpression of CDC50A induced extensive cell spreading and greatly enhanced cell migration. Depletion of either CDC50A or ATP8A1 caused a severe defect in the formation of membrane ruffles, thereby inhibiting cell migration. Analyses of phospholipid translocation at the plasma membrane revealed that the depletion of CDC50A inhibited the inward translocation of both PS and PE, whereas the depletion of ATP8A1 inhibited the translocation of PE but not that of PS, suggesting that the inward translocation of cell-surface PE is involved in cell migration. This hypothesis was further examined by using a PE-binding peptide and a mutant cell line with defective PE synthesis; either cell-surface immobilization of PE by the PE-binding peptide or reduction in the cell-surface content of PE inhibited the formation of membrane ruffles, causing a severe defect in cell migration. These results indicate that the phospholipid flippase complex of ATP8A1 and CDC50A plays a major role in cell migration and suggest that the flippase-mediated translocation of PE at the plasma membrane is involved in the formation of membrane ruffles to promote cell migration.  相似文献   
10.
The phase behaviour of mixed molecular species of phosphatidylethanolamine, phosphatidylserine and sphingomyelin of biological origin were examined in aqueous co-dispersions using synchrotron X-ray diffraction. The co-dispersions of phospholipids studied were aimed to model the mixing of lipids populating the cytoplasmic and outer leaflets in the resting or scrambled activated cell membrane. Mixtures enriched with phosphatidylethanolamine and phosphatidylserine were characterized by a phase separation of non-lamellar phases (cubic and inverted hexagonal) with a lamellar gel phase comprising the most saturated molecular species. Inclusion of sphingomyelin in the mixture resulted in a suppression of the hexagonal-II phase in favour of lamellar phases at temperatures where a proportion of the phospholipid was fluid. The effect was also dependent on the total amount of sphingomyelin in ternary mixtures, and the lamellar phase dominated in mixtures containing more than 30 mol%, irrespective of the relative proportions of phosphatidylserine/sphingomyelin. A transition from gel to liquid-crystal phase was detected by wide-angle scattering during heating scans of ternary mixtures enriched in sphingomyelin and was shown by thermal cycling experiments to be coupled with a hexagonal-II phase to lamellar transition. In such samples there was evidence of a coexistence of non-lamellar phases with a lamellar gel phase. A transition of the gel phase to the fluid state on heating from 35 to 41 °C was evidenced by a progressive increase in the lamellar d-spacing. The presence of calcium enhanced the phase separation of a lamellar gel phase from a hexagonal-II phase in mixtures enriched in phosphatidylserine. This effect was counteracted by charge screening with 150 mM NaCl. The effect of sphingomyelin on stabilizing the lamellar phase is discussed in the context of an altered composition in the cytoplasmic/outer leaflets of the plasma membrane resulting from scrambling of the phospholipid distribution. The results suggest that a lamellar structure can be retained by the inward translocation of sphingomyelin in biological membranes. The presence of monovalent cations serves also to stabilize the bilayer in activated cells where a translocation of aminoglycerophospholipids and an influx of calcium occur simultaneously.Abbreviations PC phosphatidylcholine - PE phosphatidylethanolamine - PS phosphatidylserine - SAXS small-angle X-ray scattering - SM sphingomyelin - WAXS wide-angle X-ray scattering - XRD X-ray diffraction  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号