首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In brain, phosphatidylethanolamine can be synthesized from free ethanolamine either by a pathway involving the formation of CDP-ethanolamine and its transfer to diglyceride, or by base-exchange of ethanolamine with existing phospholipids. Although de novo synthesis from serine has also been demonstrated, the metabolic pathway involved is not known. The enzyme phosphatidylserine decarboxylase appears to be involved in the synthesis of much of the phosphatidylethanolamine in liver, but the significance of this route in brain has been challenged. Our in vitro studies demonstrate the existence of phosphatidylserine decarboxylase activity in rat brain and characterize some of its properties. This enzyme is localized in the mitochondrial fraction, whereas the enzymes involved in base-exchange and the cytidine pathway are localized to microsomal membranes. Parallel in vivo studies showed that after the intracranial injection of L-[G-3H]serine, the specific activity of phosphatidylserine was greater in the microsomal fractions than in the mitochondrial fraction, whereas the opposite was true for phosphatidylethanolamine. When L-[U-14C]serine and [1-3H]ethanolamine were simultaneously injected, the 14C/3H ratio in mitochondrial phosphatidylethanolamine was 10 times that in microsomal phosphatidylethanolamine. The results demonstrate that serine is incorporated into the base moiety of phosphatidylethanolamine primarily through the decarboxylation of phosphatidylserine in brain mitochondria. A minimal value of 7% for the contribution of phosphatidylserine decarboxylase to whole-brain phosphatidylethanolamine synthesis can be estimated from the in vivo data.  相似文献   

2.
The reversibility of phosphoethanolamine transferase (EC 2.7.8.1) in rat brain is demonstrated in this paper. Microsomal ethanolamine glycerophospholipids were prelabeled with an intracerebral injection of [3H]ethanolamine 4 h before killing young rats. Labeled CDPethanolamine was produced by incubation of the microsomes with CMP, although to a lesser extent than for the previously observed release of CDPcholine. Ethanolamine and choline glycerophospholipids were labeled with [2-3H]glycerol by incubation with primary cultures of rat brain. Microsomes from rat brains, with diisopropyl phosphofluoridate for inhibition of lipases, were incubated with the labeled glycerophospholipids separately, and labeled diacylglycerols were produced. The kinetic parameters of phosphoethanolamine transferase and phosphocholine transferase (EC 2.7.8.2) were compared by incubating rat brain microsomes with [3H]CMP. Inclusion of AMP in the reaction mixture was necessary in order to inhibit the hydrolysis of CMP by an enzyme with the properties of 5'-nucleotidase (EC 3.1.3.5). For phosphoethanolamine transferase and phosphocholine transferase respectively, the Km values for CMP were 40 and 125 microM and the V values were 2.3 and 21.6 nmol/h per mg protein. The reversibility of both enzymes permits the interconversion of the diacylglycerol moieties of choline and ethanolamine glycerophospholipids. During brain ischemia, a principal pathway for degradation of ethanolamine glycerophospholipids may be by reversal of phosphoethanolamine transferase followed by hydrolysis of diacylglycerols by the lipase.  相似文献   

3.
Mitochondria can synthesize phosphatidyl-ethanolamine (PE) through phosphatidylserine decarboxylase (PS decarboxylase) activity or can import this lipid from the endoplasmic reticulum. In this work, we studied the factors influencing the import of PE in brain mitochondria and its utilization for the assembly of mitochondrial membranes. Incubation of rat brain homogenate with [1-3H]ethanolamine resulted in the synthesis and distribution of 3H-PE to subcellular fractions. T-wenty-one percent of labeled PE was recovered in purified mitochondria. The import of PE in mitochondria was studied in a reconstituted system made of microsomes (donor particles) and purified mitochondria (acceptor particles). Ca+2 and nonspecific lipid transfer protein purified from liver tissue (nsL-TP) enhanced the translocation process. 3H-PE synthesized in membrane associated to mitochondria (MAM) could also translocate to mitochondria in the reconstituted system. Exposure of mitochondria to trinitrobenzensulfonic acid (TNBS) resulted in the reaction of more than 60% of 3H-PE imported from endoplasmic reticulum and of about 25% of 14C-PE produced in mitochondria by decarboxylation of 14C-PS. Moreover, the removal of the outer mitochondrial membrane by digitonin treatment, resulted in the loss of 3H-PE, but not 14C-PE. These results indicate that labeled PE imported in mitochondria is mainly localized in the outer mitochondrial membrane, whereas PE produced by PS decarboxylase activity is confined to the inner mitochondrial membrane. Phospholipase C hydrolyzed 25–30% of both PE radioactivity and mass of the outer mitochondrial membrane indicating an asymmetrical distribution of this lipid across the membrane.Mr. Carlo Ricci is thanked for his skillful technical assistance. This work has been supported by a grant from the Ministry of Education, Rome, Italy.  相似文献   

4.
A simple assay for phosphatidylserine decarboxylase is described. Following incubation of a mitochondrial fraction from Saccharomyces cerevisiae with purified, exogenous phosphatidyl[3H]serine, the lipid extract is applied to a small DEAE-cellulose column equilibrated in CHCI3-CH3OH (1:1). The unreacted substrate, phosphatidyl[3H]serine, is quantitatively bound by the ion-exchange column while the product, phosphatidyl[3H]ethanolamine, is eluted by sequential washing with CHCI3-CH3OH (1:1) and CH3OH. The organic solvents are evaporated, and the amount of radiolabeled phosphatidyl[3H]ethanolamine formed by enzymatic decarboxylation is determined by liquid scintillation spectrometry. The reliability of this assay was established by showing that several enzymatic properties of the yeast enzyme, defined by the new assay, were essentially identical to the properties characterized by a more tedious paper chromatographic assay described previously. Virtually identical rates of enzymatic decarboxylation of phosphatidyl[3H]serine were also obtained for mitochondrial fractions from pig brain and rat liver when the activities were compared by the column and paper chromatographic methods.  相似文献   

5.
The role of serine as a precursor and metabolic regulator for phosphatidylethanolamine biosynthesis in the hamster heart was investigated. Hearts were perfused with 50 microM [1-3H]ethanolamine in the presence or absence of serine for up to 60 min. Ethanolamine uptake was attenuated by 0.05-10 mM serine in a noncompetitive manner, and the incorporation of labeled ethanolamine into phosphatidylethanolamine was also inhibited by serine. Analysis of the ethanolamine-containing metabolites in the CDP-ethanolamine pathway revealed that the conversion of ethanolamine to phosphoethanolamine was reduced. The reduction was a result of an inhibition of ethanolamine kinase activity by an elevated pool of intracellular serine. Perfusion of the heart with 1 mM serine caused a 5-fold increase in intracellular serine pool. In order to examine the action of serine on other phosphatidylethanolamine metabolic pathways, hearts were perfused with [1-3H]glycerol in the presence and absence of serine. Serine did not cause any enhancement of phosphatidylethanolamine hydrolysis. The base-exchange reaction for phosphatidylserine formation or the decarboxylation of phosphatidylserine was not affected by serine perfusion. We conclude that circulating serine plays an important role in the modulation of phosphatidylethanolamine biosynthesis via the CDP-ethanolamine pathway in the hamster heart but does not affect the contribution of the decarboxylase pathway for phosphatidylethanolamine formation.  相似文献   

6.
The behaviours of the principal NADPH-producing enzymes (glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, cytoplasmic and mitochondrial 'malic' enzyme and NAPD+-dependent isocitrate dehydrogenase) were studied during the development of rat heart and compared with those in brain and liver. 1. The enzymes belonging to the pentose phosphate pathway exhibit lower activities in heart than in other tissues throughout development. 2. The pattern of induction of heart cytoplasmic and mitochondrial 'malic' enzymes does not parallel that found in liver. Heart mitochondrial enzyme is slowly induced from birth onwards. 3. NADP+-dependent isocitrate dehydrogenase has similar activities in all tissues in 18-day foetuses. 4. Heart mitochondrial NADP+-dependent isocitrate dehydrogenase is greatly induced in the adult, where it attains a 10-fold higher activity than in liver. 5. The physiological functions of mitochondrial 'malic' enzyme and NADP+-dependent isocitrate dehydrogenase are discussed.  相似文献   

7.
Most of the phosphatidylethanolamine (PE) in mammalian cells is synthesized by two pathways, the CDP-ethanolamine pathway and the phosphatidylserine (PS) decarboxylation pathway, the final steps of which operate at spatially distinct sites, the endoplasmic reticulum and mitochondria, respectively. We investigated the importance of the mitochondrial pathway for PE synthesis in mice by generating mice lacking PS decarboxylase activity. Disruption of Pisd in mice resulted in lethality between days 8 and 10 of embryonic development. Electron microscopy of Pisd-/- embryos revealed large numbers of aberrantly shaped mitochondria. In addition, fluorescence confocal microscopy of Pisd-/- embryonic fibroblasts showed fragmented mitochondria. PS decarboxylase activity and mRNA levels in Pisd+/- tissues were approximately one-half of those in wild-type mice. However, heterozygous mice appeared normal, exhibited normal vitality, and the phospholipid composition of livers, testes, brains, and of mitochondria isolated from livers, was the same as in wild-type littermates. The amount and activity of a key enzyme of the CDP-ethanolamine pathway for PE synthesis, CTP:phosphoethanolamine cytidylyltransferase, were increased by 35-40 and 100%, respectively, in tissues of Pisd+/- mice, as judged by immunoblotting; PE synthesis from [3H]ethanolamine was correspondingly increased in hepatocytes. We conclude that the CDP-ethanolamine pathway in mice cannot substitute for a lack of PS decarboxylase during development. Moreover, elimination of PE production in mitochondria causes fragmented, misshapen mitochondria, an abnormality that likely contributes to the embryonic lethality.  相似文献   

8.
In the yeast, three biosynthetic pathways lead to the formation of phosphatidylethanolamine (PtdEtn): (i) decarboxylation of phosphatidylserine (PtdSer) by phosphatidylserine decarboxylase 1 (Psd1p) in mitochondria; (ii) decarboxylation of PtdSer by Psd2p in a Golgi/vacuolar compartment; and (iii) the CDP-ethanolamine (CDP-Etn) branch of the Kennedy pathway. The major phospholipid of the yeast, phosphatidylcholine (PtdCho), is formed either by methylation of PtdEtn or via the CDP-choline branch of the Kennedy pathway. To study the contribution of these pathways to the supply of PtdEtn and PtdCho to mitochondrial membranes, labeling experiments in vivo with [(3)H]serine and [(14)C]ethanolamine, or with [(3)H]serine and [(14)C]choline, respectively, and subsequent cell fractionation were performed with psd1Delta and psd2Delta mutants. As shown by comparison of the labeling patterns of the different strains, the major source of cellular and mitochondrial PtdEtn is Psd1p. PtdEtn formed by Psd2p or the CDP-Etn pathway, however, can be imported into mitochondria, although with moderate efficiency. In contrast to mitochondria, microsomal PtdEtn is mainly derived from the CDP-Etn pathway. PtdEtn formed by Psd2p is the preferred substrate for PtdCho synthesis. PtdCho derived from the different pathways appears to be supplied to subcellular membranes from a single PtdCho pool. Thus, the different pathways of PtdEtn biosynthesis play different roles in the assembly of PtdEtn into cellular membranes.  相似文献   

9.
Primary cultures of glial cells prepared from brains of newborn rats were grown for periods of 1–5 weeks. After a proliferative phase of between 2 and 3 weeks, the cultures were maintained in stationary phase, during which a significant increase of oxygen consumption and of the activities of lactate dehydrogenase, succinate dehydrogenase, and mitochondrial glycerolphosphate dehydrogenase could be observed. Furthermore, qualitative changes in the lactate dehydrogenase isoenzyme pattern were found with time, characterized by a shift toward an enhanced synthesis of H subunits. A similar development was found in comparing the LDH isoenzyme pattern in the brain of 15-day-old rat embryo with those of newborn and adult rat brains. It is suggested that some aspects of maturation of glial cells in culture are comparable to those occurring in whole brain in vivo, namely a shift towards an enhanced aerobic metabolism.  相似文献   

10.
The activity and hormonal regulation of NAD- and NADP-linked isocitrate dehydrogenase (EC 1.1.1.41 and 1.1.1.42, respectively) in the brain and liver of rats of various ages were investigated. The activity of NAD-linked isocitrate dehydrogenase of the brain was greater than cytoplasmic or mitochondrial NADP-linked isocitrate dehydrogenase. In contrast, the cytoplasmic NADP-isocitrate dehydrogenase of the liver predominates over both NAD- and mitochondrial NADP-isocitrate dehydrogenases at the three ages studied. The activity of NAD-isocitrate dehydrogenase increased in the brain (139%) and liver (17%) of rats upt o 33 weeks of age and decreased (57 and 39%, respectively) in old rats (85-week-old). The activity of cytoplasmic NADP-isocitrate dehydrogenase was maximum in immature (6-week-old) rat brain and decreased as the age of the rats increased; whereas, in liver, the activity of this enzyme was found to be maximum in adult rats (33-week-old). Brain mitochondrial NADP-isocitrate dehydrogenase activity increased (64%) in adult rats, but in liver it decreased (45 and 33% in 33- and 85-week-old rats, respectively). In both tissues, adrenalectomy and hydrocortisone treatment showed differential age-dependent response. Hydrocortisone-mediated induction of the level of enzymes was inhibited by actinomycin D.  相似文献   

11.
Abstract: Ethanolamine and choline glycerophospholipids are the major phospholipids of brain membranes. During brain development, the accumulation of these phospholipids is most intense when myelination occurs. In order to gain knowledge about the regulatory mechanisms for synthesis of these lipids in relation to membrane synthesis, we investigated the activities of the 1,2-diradyl-sn-gIycerol: CDPethanolamine phosphoethanolarnine transferase and 1,2-diradyl-sri-glycerol:CDPcholine phosphocholine transferase during chicken brain development. Diacyl, alkenylacyl, and alkylacylglycerols are substrates for both enzymes. The specific activities of microsomal phospho-ethanolamine and phosphocholine transferases are constant between the 8th and 18th day of embryonic life. The specific activities of both enzymes double around hatching, which is the period of intense myelination and marked ac-cumulation of ethanolamine and choline glycerophospholipids in brain. At the same time, the amount of microsomes increases by 50%; thus the total activities increase threefold. Four days after hatching the specific activities of both enzymes are at adult values. Similar results were obtained in the presence of exogenous diacyl or alkylacylglycerols. During brain development the apparent Km, value of rnicrosomal phosphoethanolamine transferase for CDP ethanolamine increases when assayed with diaclyglycerols or alkylacyl-glycerols a s lipid substrates. The apparent Km, value of phosphocholine trans-ferase for CDP choline does not change during brain development in the presence of exogenous diacylglycerols, but increases in the presence of exogenous alkylacylglycerols. These changes in Km, values may be due to the appearance of glial isoenzyme at the beginning of myelination. The apparent Km, values of diacylglycerol phosphocholine, alklyacylglycerol phosphocholine, and diacyl-glycerol phosphoethanolamine transferases for their CDP bases are similar in adult brain microsomes and are threefold higher than the apparent Km, value of alkylacylglycerolphosphoethanolamine transferase. The high affinity of alkylacylglycerolphosphoethanolamine transferase for CDPethanolamine may be responsible for the preferential synthesis of ethanolamine plasmalogens in brain.  相似文献   

12.
13.
Abstract: Phosphatidylserine was labeled by incubating rat brain homogenates with [3-14C]serine in the presence of Ca2+ (base-exchange conditions). Some labeled phosphati-dylethanolamine also forms, in spite of the inhibition of Ca2+ on phosphatidylserine decarboxylase. Phosphatidylserine labeling and decarboxylation also occur on incubating a mixture of purified mitochondria and microsomes, suggesting that no soluble factors are necessary for the synthesis and the decarboxylation of phosphatidylserine. Ca2+ favors the transfer of phosphatidylserine from microsomes (where it forms) to mitochondria (where it is decarboxylated). The specific radioactivity of the phosphatidylserine transferred to mitochondria is higher than that of microsomal phosphatidylserine. This finding supports the hypothesis that the lipid is compartmentalized in microsomes and that radioactive, newly synthesized phosphatidylserine is much better exported than the bulk of microsomal phospholipid.  相似文献   

14.
Using a method and model developed in our laboratory to quantitatively study brain phospholipid metabolism, in vivo rates of incorporation and turnover of docosahexaenoic acid in brain phospholipids were measured in awake rats. The results suggest that docosahexaenoate incorporation and turnover in brain phospholipids are more rapid than previously assumed and that this rapid turnover dilutes tracer specific activity in brain docoshexaenoyl-CoA pool due to release and recycling of unlabeled fatty acid from phospholipid metabolism. Fractional turnover rates for docosahexaenoate within phosphatidylinositol, choline glycerophospholipids, ethanolamine glycerophospholipids and phosphatidylserine were 17.7, 3.1, 1.2, and 0.2 %.h–1, respectively. Chronic lithium treatment, at a brain level considered to be therapeutic in humans (0.6 mol.g–1), had no effect on turnover of docosahexaenoic acid in individual brain phospholipids. Consistent with previous studies from our laboratory that chronic lithium decreased the turnover of arachidonic acid within brain phospholipids by up to 80% and attenuated brain phospholipase A2 activity, the lack of effect of lithium on docosahexaenoate recycling and turnover suggests that a target for lithium's action is an arachidonic acid-selective phospholipase A2.  相似文献   

15.
The content and fatty acid composition of phospholipids and the in vivo labeling of lipids by [3H]glycerol and [3H]serine was studied in the retina and the optic tectum of young chickens. The tectum had a higher content of phospholipids and a significantly lower ratio of choline (CGP) to ethanolamine (EGP) glycerophospholipids than the retina. Lipids of the chicken optic system were characterized by a high proportion of polyenoic fatty acids of the n-6 series compared to other species. Intravitreally injected [3H]glycerol was incorporated into all glycerol-containing lipids of the retina, especially in CGP and EGP. Most of the label from [3H]serine was found in serine glycerophospholipids (SGP). The time-dependent distribution of both precursors among retinal lipids was consistent with de novo synthesis as well as metabolic interconversions of lipids. Thus, [3H] from serine also appeared in EGP and CGP, indicating the presence and activity of SGP decarboxylase and EGP-n-methyl transferase. Lipids labeled with both precursors in retina were subsequently found in the tectum, via axoplasmic transport. Even though different lipid classes were labelled by each precursor the proportion of lipids transported to the tectum was similar in both cases (about 1% of the label present in retina).  相似文献   

16.
The highly-purified, oligomycin-sensitive mitochondrial adenosine triphosphatase has been reconstituted with phosphatidylserine. Treatment of the phosphatidylserine-reconstituted ATPase with phosphatidylserine decarboxylase produced a 3-fold decrease in the specific activity of the resulting phosphatidylethanolamine-enriched ATPase complex. Subsequent control experiments indicated that the resulting phosphatidylethanolamine was responsible for the lowered ATPase specific activity. These observations indicate that acidic phospholips do more than facilitate an interaction between the highly-purified, lipid-depleted ATPase and phospholipid. The negatively charged phospholipid appears to be essential for maintaining high levels of oligomycin-sensitive activity even after the initial interaction between phospholipid and the ATPase complex has occurred.  相似文献   

17.
Epithelial cells and some of their transformed derivatives require ethanolamine to grow normally in defined culture medium. When these cells are cultured without ethanolamine, the amount of cellular phosphatidylethanolamine is considerably reduced. Using a set of rat mammary carcinoma cell lines whose growth is responsive (64-24 cells) and not responsive (22-1 cells) to ethanolamine, the biochemical mechanism of ethanolamine responsiveness was investigated. The biosynthesis and metabolism of phospholipid, particularly of those involving phosphatidylethanolamine, were thus compared between the two types of cells. The incorporation of [3H]serine into phosphatidylserine and phosphatidylethanolamine in 64-24 cells was 60 and 37%, respectively, of those in 22-1 cells. However, the activity of phosphatidylserine decarboxylase was virtually the same in these cell lines. When these cells were cultured in the presence of [32P]phosphatidylcholine and [32P]phosphatidylethanolamine, the rate of accumulation of 32P-labeled phosphatidylserine from the radioactive phosphatidylethanolamine was considerably reduced in 64-24 cells compared to that in 22-1 cells, although the rate of synthesis of phosphatidylserine and phosphatidylethanolamine from the radioactive phosphatidylcholine was similar between the two cell lines. The rate of labeling phosphatidylcholine from the radioactive phosphatidylethanolamine was also reduced in 64-24 cells, although the difference was not as great as that of phosphatidylserine. Incorporation of 32P into phosphatidylethanolamine was correlated with the concentration of ethanolamine in the culture medium in 64-24 cells, whereas in 22-1 cells the incorporation was not influenced by ethanolamine. Enzyme activities of the CDP-ethanolamine pathway were not significantly different between the two cell lines. The rate of degradation of phosphatidylethanolamine was also similar in these cell lines. These results show that ethanolamine responsiveness of 64-24 cells, and probably other epithelial cells, is due to a limited ability to synthesize phosphatidylserine resulting from a limited base-exchange activity utilizing phosphatidylethanolamine.  相似文献   

18.
Plants form ethanolamine (Etn) moieties by decarboxylating serine or phosphatidylserine (PtdSer), and use them to make phosphatidylethanolamine, phosphatidylcholine, choline, and glycine betaine. Serine decarboxylation is mediated by a serine decarboxylase (SDC) that is unique to plants and has a characteristic N-terminal extension. This extension was shown to have little influence on function of the enzyme in vitro. To explore the importance of SDC and its extension in vivo, native or truncated versions of the Arabidopsis enzyme were expressed in tobacco. Transgene expression increased SDC activity by up to 10-fold and free Etn level up to 6-fold, but did not change levels of serine, choline, phosphocholine, or phosphatidyl bases. The truncated enzyme gave significantly higher Etn levels. These results show that SDC activity exerts substantial control over flux to Etn, and suggest that the enzyme's N-terminus may have a regulatory role. In complementary studies with Arabidopsis, we showed that a mutant with 9-fold elevated mitochondrial PtdSer decarboxylase activity had normal pools of serine, Etn, and Etn metabolites. Taken together, these data indicate that serine decarboxylation is the main source of Etn moieties in plants. The ability to enhance serine --> Etn flux should advance engineering of choline and glycine betaine accumulation.  相似文献   

19.
The inner mitochondrial membrane plays a crucial role in cellular lipid homeostasis through biosynthesis of the non-bilayer-forming lipids phosphatidylethanolamine and cardiolipin. In the yeast Saccharomyces cerevisiae, the majority of cellular phosphatidylethanolamine is synthesized by the mitochondrial phosphatidylserine decarboxylase 1 (Psd1). The biogenesis of Psd1 involves several processing steps. It was speculated that the Psd1 precursor is sorted into the inner membrane and is subsequently released into the intermembrane space by proteolytic removal of a hydrophobic sorting signal. However, components involved in the maturation of the Psd1 precursor have not been identified. We show that processing of Psd1 involves the action of the mitochondrial processing peptidase and Oct1 and an autocatalytic cleavage at a highly conserved LGST motif yielding the α- and β-subunit of the enzyme. The Psd1 β-subunit (Psd1β) forms the membrane anchor, which binds the intermembrane space-localized α-subunit (Psd1α). Deletion of a transmembrane segment in the β-subunit results in mislocalization of Psd1 and reduced enzymatic activity. Surprisingly, autocatalytic cleavage does not depend on proper localization to the inner mitochondrial membrane. In summary, membrane integration of Psd1 is crucial for its functionality and for maintenance of mitochondrial lipid homeostasis.  相似文献   

20.
Defects in mitochondrial energy metabolism have been implicated in several neurodegenerative disorders. Defective complex I (NADH:ubiquinone oxidoreductase) activity plays a key role in Leber's hereditary optic neuropathy and, possibly, Parkinson's disease, but there is no way to assess this enzyme in the living brain. We previously described an in vitro quantitative autoradiographic assay using [(3)H]dihydrorotenone ([(3)H]DHR) binding to complex I. We have now developed an in vivo autoradiographic assay for complex I using [(3)H]DHR binding after intravenous administration. In vivo [(3)H]DHR binding was regionally heterogeneous, and brain uptake was rapid. Binding was enriched in neurons compared with glia, and white matter had the lowest levels of binding. In vivo [(3)H]DHR binding was markedly reduced by local and systemic infusion of rotenone and was enhanced by local NADH administration. There was an excellent correlation between regional levels of in vivo [(3)H]DHR binding and the in vitro activities of complex II (succinate dehydrogenase) and complex IV (cytochrome oxidase), suggesting that the stoichiometry of these components of the electron transport chain is relatively constant across brain regions. The ability to assay complex I in vivo should provide a valuable tool to investigate the status of this mitochondrial enzyme in the living brain and suggests potential imaging techniques for complex I in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号