首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   2篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2009年   3篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2002年   2篇
  1980年   1篇
排序方式: 共有16条查询结果,搜索用时 140 毫秒
1.
The effect of caffeine (0.25–1.5 mM) on UV-irradiated (5 and 10 J/m2) primary cultures of mouse epidermal cells (EPD) and an in vitro transformed cell line (PDV) was studied at the cellular and molecular levels. A synergistic reduction in cell survival induced by caffeine with UV-irradiation was found in the PDV cells at 10 J/m2 but not at 5 J/m2. When conversion of low molecular weight newly-synthesized DNA to high molecular weight DNA was studied in both cell types, caffeine at 1.5 mM had no effect on this conversion in unirradiated cultures. At 5 J/m2, caffeine had a transitory inhibitory effect on this conversion. However, at 10 J/m2 caffeine had a strong permanent inhibitory effect on this conversion at doses higher than 0.5 mM in PDV cells and higher than 0.25 mM in EPD cells. This apparent inhibition of elongation by caffeine in irradiated cells could not be accounted for by an effect on the rate of DNA synthesis. In PDV cells there was a direct correlation in terms of effective caffeine dose level between synergistic reduction in cell survival after UV and the effect on DNA elongation. Irradiated EPD cells were more sensitive to the inhibitory effect of caffeine on DNA elongation.  相似文献   
2.
叶绿体是植物细胞内一种重要的细胞器.它不仅是光合作用的场所,还是其它多种中间代谢的场所.叶绿体起源于蓝细菌,与其原核祖先类似,通过二分裂方式进行增殖.最近的研究表明,叶绿体的分裂装置包含原核起源和真核起源的蛋白质,它们在叶绿体的内膜内侧和外膜外侧协同作用以完成叶绿体的分裂.在过去十几年里,包括丝状温度敏感蛋白Z(FtsZ)、Min系统蛋白、质体分裂蛋白(PDV)和ARC蛋白等在内的多个叶绿体分裂相关组分被分离鉴定.本文简要介绍了叶绿体分裂装置各成员的发现、叶绿体被膜的收缩和叶绿体分裂位点的选择机制.另外,植物发育过程中叶绿体分裂可能受到细胞的控制,但目前对细胞如何调控叶绿体分裂知之甚少.本文对该领域的最新研究进展也进行了综述.  相似文献   
3.
本文从基因组特点、生理功能、起源进化及应用前景等方面综述了近年来有关多分DNA病毒分子生物学的研究进展。  相似文献   
4.
Chloroplast division in plant cells is accomplished through the coordinated action of the tubulin-like FtsZ ring inside the organelle and the dynamin-like ARC5 ring outside the organelle. This coordination is facilitated by ARC6, an inner envelope protein required for both assembly of FtsZ and recruitment of ARC5. Recently, we showed that ARC6 specifies the mid-plastid positioning of the outer envelope proteins PDV1 and PDV2, which have parallel functions in dynamin recruitment. PDV2 positioning involves direct ARC6–PDV2 interaction, but PDV1 and ARC6 do not interact indicating that an additional factor functions downstream of ARC6 to position PDV1. Here, we show that PARC6 (paralog of ARC6), an ARC6-like protein unique to vascular plants, fulfills this role. Like ARC6, PARC6 is an inner envelope protein with its N-terminus exposed to the stroma and Arabidopsis parc6 mutants exhibit defects of chloroplast and FtsZ filament morphology. However, whereas ARC6 promotes FtsZ assembly, PARC6 appears to inhibit FtsZ assembly, suggesting that ARC6 and PARC6 function as antagonistic regulators of FtsZ dynamics. The FtsZ inhibitory activity of PARC6 may involve its interaction with the FtsZ-positioning factor ARC3. A PARC6–GFP fusion protein localizes both to the mid-plastid and to a single spot at one pole, reminiscent of the localization of ARC3, PDV1 and ARC5. Although PARC6 localizes PDV1, it is not required for PDV2 localization or ARC5 recruitment. Our findings indicate that PARC6, like ARC6, plays a role in coordinating the internal and external components of the chloroplast division complex, but that PARC6 has evolved distinct functions in the division process.  相似文献   
5.
黄芳  时敏  陈学新  章金明 《昆虫学报》2011,54(9):989-996
半闭弯尾姬蜂Diadegma semiclausum是小菜蛾Plutella xylostella的优势内寄生蜂, 拥有毒液、多分DNA病毒(PDV)等寄生因子,能有效调控寄主幼虫的营养生理和免疫系统, 但其毒液在这过程中的功能不明。本文利用SDS-PAGE方法分析了半闭弯尾姬蜂毒液的蛋白组分,利用寄主幼虫血细胞体外原代培养的方法,研究了小菜蛾幼虫血细胞噬菌能力在半闭弯尾姬蜂寄生后的变化情况。结果表明:半闭弯尾姬蜂毒液蛋白分子量主要集中在35~220 kDa之间,少数小于15 kDa,但分子量处于35~70 kDa之间的蛋白含量较高,与其他寄生蜂毒液蛋白相似。半闭弯尾姬蜂毒液单独对寄主小菜蛾幼虫功能血细胞(浆血细胞和颗粒血细胞)的延展能力和吞噬功能不产生破坏作用。但半闭弯尾姬蜂寄生后短时间内,寄主功能血细胞的延展受到抑制,然而功能血细胞仍然能识别外源异物, 却无法进一步吞噬外源物; 寄生后24 h,功能血细胞的延展力恢复,颗粒血细胞的吞噬作用可顺利完成。本研究证明了半闭弯尾姬蜂寄生能暂时性地抑制颗粒血细胞的延展性从而影响其噬菌过程。  相似文献   
6.
逆转录—聚合酶链式反应技术检测“歇马杏”李矮缩病毒   总被引:2,自引:2,他引:0  
侯义龙  于亚军  张立娟  赵洋  于大永   《广西植物》2006,26(6):626-627
为选择不携带主要病毒的植株,利用作者已建立的PDVRT-PCR检测体系对辽宁省大连市地方特产“歇马杏”田间植株携带PDV的情况进行了调查,结果表明,被检植株PDV的感染率达90%,但程度不同。  相似文献   
7.
Prune dwarf virus (PDV), a pathogen of stone fruit trees worldwide, shows a great variability in its biological, serological and molecular properties. The coat protein sequences of ten PDV variants from different stone fruit tree species in Turkey were determined. The sequence for each variant was 657 nucleotides in length. The phylogenetic analyses of the sequences of the Turkish variants and of additional sequences of other PDV variants from international databases indicate the existence of four groups of PDV variants: one contains cherry variants that differs in group specific conserved amino acids; a second contains one apricot and cherry variants, most members of the group being Turkish variants; a third contains mixed variants from cherry, peach, plum trees and an almond tree; and a fourth contains only variants from almond trees. Based on their hosts, we propose the nomenclature of these groups as cherry I, cherry II, mixed and almond groups, respectively.  相似文献   
8.
A viral histone H4 is encoded in a polydnavirus called Cotesia plutellae bracovirus (CpBV), which is symbiotic to an endoparasitoid wasp, C. plutellae. Compared to general histone H4s, the viral H4 possesses an extra N-terminal tail containing 38 amino acid residues, which has been presumed to control host gene expression in an epigenetic mode. To analyze the epigenetic control activity of CpBV-H4 on expression of immune-associated genes, it was transiently expressed in larvae of Tribolium castaneum that had been annotated in the immune genes from a full genome sequence. Subsequent alteration of gene expression pattern was compared with that of its mutant form deleting N-terminal tail (truncated CpBV-H4). In response to bacterial challenge, T. castaneum induces expression of 13 antimicrobial peptide (AMP) genes. When CpBV-H4 was expressed, the larvae failed to express 12 inducible AMP genes. By contrast, when truncated CpBV-H4 was transiently expressed, all AMP genes were expressed. Hemocyte nodule formation was significantly impaired by expression of CpBV-H4, in which expressions of tyrosine hydroxylase and dihydroxyphenylalanine decarboxylase were suppressed. However, expression of truncated CpBV-H4 did not give any significant adverse effect on the cellular immunity. The immunosuppression of CpBV-H4 was further supported by its activity of enhancing bacterial pathogenicity of an entomopathogenic bacterium, Xenorhabdus nematophila, against larvae transiently expressing CpBV-H4. These results suggest that CpBV-H4 suppresses both humoral and cellular immune responses of T. castaneum by altering a normal epigenetic control of immune-associated gene expression.  相似文献   
9.
目的:探索叶绿体分裂蛋白PLASTID DIVISION1(PDV1)胞质侧结构域的高效可溶性表达条件,并得到高纯度目的蛋白。方法:通过改变表达载体种类、基因片段大小、诱导剂浓度、诱导温度的方法,以及运用分子伴侣的协助,实现目的蛋白高效可溶性表达。通过镍柱亲和层析和分子筛层析纯化目的蛋白。结果:(1)带His标签的目的蛋白大部分以包涵体形式存在于沉淀中;(2)截掉疏水区域并与增溶标签GST或NusA融合表达,再通过改变诱导表达条件,可以实现PDV1胞质侧结构域的可溶性表达;(3)比较目的蛋白可溶性表达量,选择高效可溶性表达体系,并在该条件下纯化得到高纯度目的蛋白。结论:PDV1胞质侧结构域的高效可溶性表达及纯化,为进一步研究该蛋白的结构及其在叶绿体分裂过程中的作用奠定了一定基础。  相似文献   
10.
Analysis of natural host-parasite relationships reveals the evolutionary forces that shape the delicate and unique specificity characteristic of such interactions. The accessory long gland-reservoir complex of the wasp Leptopilina heterotoma (Figitidae) produces venom with virus-like particles. Upon delivery, venom components delay host larval development and completely block host immune responses. The host range of this Drosophila endoparasitoid notably includes the highly-studied model organism, Drosophila melanogaster. Categorization of 827 unigenes, using similarity as an indicator of putative homology, reveals that approximately 25% are novel or classified as hypothetical proteins. Most of the remaining unigenes are related to processes involved in signaling, cell cycle, and cell physiology including detoxification, protein biogenesis, and hormone production. Analysis of L. heterotoma's predicted venom gland proteins demonstrates conservation among endo- and ectoparasitoids within the Apocrita (e.g., this wasp and the jewel wasp Nasonia vitripennis) and stinging aculeates (e.g., the honey bee and ants). Enzyme and KEGG pathway profiling predicts that kinases, esterases, and hydrolases may contribute to venom activity in this unique wasp. To our knowledge, this investigation is among the first functional genomic studies for a natural parasitic wasp of Drosophila. Our findings will help explain how L. heterotoma shuts down its hosts' immunity and shed light on the molecular basis of a natural arms race between these insects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号