首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   123篇
  国内免费   11篇
  2024年   2篇
  2023年   28篇
  2022年   23篇
  2021年   51篇
  2020年   54篇
  2019年   106篇
  2018年   62篇
  2017年   61篇
  2016年   32篇
  2015年   33篇
  2014年   61篇
  2013年   50篇
  2012年   16篇
  2011年   31篇
  2010年   8篇
  2009年   16篇
  2008年   10篇
  2007年   14篇
  2006年   5篇
  2005年   11篇
  2004年   12篇
  2003年   2篇
  2002年   4篇
  2001年   8篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   8篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1987年   1篇
  1986年   2篇
  1980年   1篇
排序方式: 共有739条查询结果,搜索用时 15 毫秒
1.
Medial knee osteoarthritis is a debilitating disease. Surgical and conservative interventions are performed to manage its progression via reduction of load on the medial compartment or equivalently its surrogate measure, the external adduction moment. However, some studies have questioned a correlation between the medial load and adduction moment. Using a musculoskeletal model of the lower extremity driven by kinematics–kinetics of asymptomatic subjects at gait midstance, we aim here to quantify the relative effects of changes in the knee adduction angle versus changes in the adduction moment on the joint response and medial/lateral load partitioning. The reference adduction rotation of 1.6° is altered by ±1.5° to 3.1° and 0.1° or the knee reference adduction moment of 17 N m is varied by ±50% to 25.5 N m and 8.5 N m. Quadriceps, hamstrings and tibiofemoral contact forces substantially increased as adduction angle dropped and diminished as it increased. The medial/lateral ratio of contact forces slightly altered by changes in the adduction moment but a larger adduction rotation hugely increased this ratio from 8.8 to a 90 while in contrast a smaller adduction rotation yielded a more uniform distribution. If the aim in an intervention is to diminish the medial contact force and medial/lateral load ratio, a drop of 1.5° in adduction angle is much more effective (causing respectively 12% and 80% decreases) than a reduction of 50% in the adduction moment (causing respectively 4% and 13% decreases). Substantial role of changes in adduction angle is due to the associated alterations in joint nonlinear passive resistance. These findings explain the poor correlation between knee adduction moment and tibiofemoral compartment loading during gait suggesting that the internal load partitioning is dictated by the joint adduction angle.  相似文献   
2.
Epidemiological studies indicate that occupational activities that require extended deep knee flexion or kneeling are associated with a higher prevalence of knee osteoarthritis. In many sport activities, such as a catcher in a baseball or a softball game, athletes have to make repetitive deep squatting motions, which have been associated with the development of osteochondritis dissecans. Excessive deep knee flexion postures may cause excessive loading in the knee joint. In deep knee flexion postures, the posterior aspect of the shank will contact the posterior thigh, resulting in a compressive force within the soft tissues. The current study was aimed at analyzing the effects of the posterior thigh/shank contact on the joint loading during deep knee flexion in a natural knee. An existing, whole body model with detailed anatomical components of the knee (AnyBody) has been adopted and modified for this study. The effects of the posterior thigh/shank contact were evaluated by comparing the results of the inverse dynamic analysis for two scenarios: with and without the posterior thigh/shank contact force. Our results showed that, in a deep squatting posture (knee flexion 120+ degrees), the posterior thigh/shank contact helps reduce the patellofemoral (PF) and tibiofemoral (TF) normal contact forces by 42% and 57%, respectively.  相似文献   
3.
The hedgehog signalling pathway is one of the key regulators of metazoan development, and it plays an important role in the regulation of a variety of developmental and physiological processes. But it is aberrantly activated in many human diseases, including osteoarthritis (OA). In this study, we have reviewed the association of hedgehog signalling pathway in the development and progression of OA and evaluated the efforts to target this pathway for the prevention of OA. Usually in OA, activation of hedgehog induces up-regulation of the expression of hypertrophic markers, including type X collagen, increases production of nitric oxide and prostaglandin E2, several matrix-degrading enzymes including matrix metalloproteinase and a disintegrin and metalloproteinase with thrombospondin motifs in human knee joint cartilage leading to cartilage degeneration, and thus contributes in OA. Targeting hedgehog signalling might be a viable strategy to prevent or treat OA. Chemical inhibitors of hedgehog signalling is promising, but they cause severe side effects. Knockdown of HH gene is not an option for OA treatment in humans because it is not possible to delete HH in larger animals. Efficient knockdown of HH achieved by local delivery of small interfering RNA in future studies utilizing large animal OA models might be a more efficient approach for the prevention of OA. However, it remains a major problem to develop one single scaffold due to the different physiological functions of cartilage and subchondral bones possess. More studies are necessary to identify selective inhibitors for efficiently targeting the hedgehog pathway in clinical conditions.  相似文献   
4.
Patterns of degenerative joint disease are investigated in the shoulder, elbow, hip, and knee joints of the macerated remains of approximately 800 individuals from 20th century American and two prehistoric populations. Age is an important contributory factor in all joints, but its effects are seen most directly in the shoulder and hip. Patterns of right-left involvement also indicate the elbow is the most susceptible area to local factors. Multiple joint involvement is seen more often in females from contemporary populations but more often in males from archeological groups. No significant association is found between degenerative involvement and osteometric measurements, and cause of death is probably only incidentally associated with degenerative disease.  相似文献   
5.
Functional calibration methods were devised to improve repeatability and accuracy of the knee flexion–extension axis, which is used to define the medio-lateral axis of the femur coordinate system in gait analysis. Repeatability of functional calibration methods has been studied extensively in healthy individuals, but not accuracy in the absence of a benchmark knee axis. We captured bi-plane fluoroscopy data of the knee joint in 17 subjects with unilateral total knee arthroplasty during treadmill walking. The prosthesis provided a benchmark knee axis to evaluate the functional calibration methods. Stereo-photogrammetry data of thigh and shank marker clusters were captured simultaneously to investigate the effect of soft tissue artefact (STA). Three methods were tested, the Axis Transformation Technique (ATT) finds the best single fixed axis of rotation, 2DofKnee finds the axis that minimises knee varus–valgus and trajAJC finds the axis perpendicular to the trajectory, in the transverse plane of the femur, of a point located on the longitudinal axis of the tibia. Using fluoroscopy data, functional axes formed an angle of less than 2° in the transverse plane with the benchmark axis. True internal–external range of movement was correlated with decreased accuracy for ATT, while varus–valgus range of movement was correlated with decreased accuracy for 2DofKnee and trajAJC. STA had negative impact on accuracy and variability. Using stereo-photogrammetry data, the accuracy of 2DofKnee was 1.7°(SD: 5.1°), smaller than ATT 2.9°(SD: 5.1°) but not to trajAJC 1.7°(SD: 5.2°). Our results confirm that of previous studies, which utilised the femur condylar axis as reference.  相似文献   
6.
Up to nine out of 10 male STR/ORT mice develop osteoarthritis (OA) of the medial tibial cartilage at an early age. This has now been shown to be related to changes in the activity and distribution of monoamine oxidase which is related to the metabolism of catecholamines. Treatment with diclofenac sodium tended to normalize this activity but there was no significant histological improvement. It was therefore postulated that two influences were involved in the development of OA: a cellular and an extracellular factor. The first was improved by diclofenac sodium; the second, namely oedema of the matrix, was improved by tribenoside. In very preliminary studies, feeding the two drugs simultaneously resulted in 7/9 mice having no sign of OA.  相似文献   
7.
Osteoarthritis (OA) is a common joint disease that mainly affects the diarthrodial joints. Treatments for OA include non-pharmacological interventions, topical and oral therapies, intra-articular therapies and joint surgery. However, all the treatments mentioned above mainly aim to control the symptoms instead of improving or reversing the joint condition. In this research, we observed the effect of recombinant platelet-derived growth factor (PDGF)-BB on OA in a monosodium iodoacetate (MIA)–induced rat model and revealed the possible mechanisms. In vitro, the level of inflammation in the chondrocytes was gradually alleviated, and the apoptosis rate was gradually decreased by PDGF-BB at increasing concentrations. The levels of p-p38, Bax and caspase-3 decreased, and the level of p-Erk increased with increasing PDGF-BB concentration. In vivo, PDGF-BB could significantly reverse chondrocyte and matrix loss. Furthermore, high concentrations of PDGF-BB could alleviate cartilage hyperplasia to remodel the tissue. The level of collagen II was up-regulated, and the levels of collagen X and apoptosis were down-regulated by increasing concentrations of PDGF-BB. In conclusion, recombinant PDGF-BB alleviated OA by down-regulating caspase-3-dependent apoptosis. The effects of PDGF-BB on OA mainly include inhibiting chondrocyte loss, reducing cartilage hyperplasia and osteophyte formation, and regulating collagen anabolism.  相似文献   
8.
Our primary objective was to examine external hip joint moments during walking in people with mild radiographic hip osteoarthritis (OA) with and without symptoms and disease-free controls. Three groups were compared (symptomatic with mild radiographic hip OA, n = 12; asymptomatic with mild radiographic hip OA, n = 13; OA-free controls, n = 20). Measures of the external moment (peak and impulse) in the sagittal, frontal and transverse plane during walking were determined. Variables were compared according to group allocation using mixed linear regression models that included individual gait trials, with group allocation as fixed effect and walking speed as a random effect. Participants with evidence of radiographic disease irrespective of symptoms walked 14–16% slower compared to disease-free controls (p = 0.002). Radiographic disease without symptoms was not associated with any altered measures of hip joint moment compared to asymptomatic OA-free controls once speed was taken into account (p ≥ 0.099). People with both mild radiographic disease and symptoms had lower external peak hip adduction moment (p = 0.005) and lower external peak internal rotation moment (p < 0.001) accounting for walking speed. Among angular impulses, only the presence of symptoms was associated with a reduced hip internal rotation impulse (p = 0.002) in the symptomatic group. Collectively, our observations suggest that symptoms have additional mechanical associations from radiographic disease alone, and provide insight into potential early markers of hip OA. Future research is required to understand the implications of modifying walking speed and/or the external hip adduction and internal rotation moment in people with mild hip OA.  相似文献   
9.
Withaferin A (WFA) is a major chemical constituent of Withania somnifera, also known as Indian ginseng. Many recent reports have provided evidence of its anti-tumor, anti-inflammation, anti-oxidant, and immune modulatory activities. Although the compound appears to have a large number of effects, its defined mechanisms of action have not yet been determined.  相似文献   
10.
Osteoarthritis (OA) is the most frequent joint disease, characterized by degradation of extracellular matrix and alterations in chondrocyte metabolism. Some authors reported that electromagnetic fields (EMFs) can positively interfere with patients affected by OA, even though the nature of the interaction is still debated. Human primary osteoarthritic chondrocytes isolated from the femoral heads of OA-patients undergoing to total hip replacement, were cultured in vitro and exposed 30?min/day for two weeks to extremely-low-frequency electromagnetic field (ELF) with fixed frequency (100?Hz) and to therapeutic application of musically modulated electromagnetic fields (TAMMEF) with variable frequencies, intensities and waveforms. Sham-exposed (S.E.) cells served as control group. Cell viability was measured at days 2, 7 and 14. After two weeks, cell lysates were processed using a proteomic approach. Chondrocyte exposed to ELF and TAMMEF system demonstrated different viability compared to untreated chondrocytes (S.E.). Proteome analysis of 2D-Electrophoresis and protein identification by mass spectrometry showed different expression of proteins derived from nucleus, cytoplasm and organelles. Function analysis of the identified proteins showed changes in related-proteins metabolism (glyceraldeyde-3-phosphate-dehydrogenase), stress response (Mn-superoxide-dismutase, heat-shock proteins), cytoskeletal regulation (actin), proteinase inhibition (cystatin-B) and inflammation regulatory functions (S100-A10, S100-A11) among the experimental groups (ELF, TAMMEF and S.E.). In conclusion, EMFs do not cause damage to chondrocytes, besides stimulate safely OA-chondrocytes and are responsible of different protein expression among the three groups. Furthermore, protein analysis of OA-chondrocytes treated with ELF and the new TAMMEF systems could be useful to clarify the pathogenetic mechanisms of OA by identifying biomarkers of the disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号