首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Large knee adduction moments during gait have been implicated as a mechanical factor related to the progression and severity of tibiofemoral osteoarthritis and it has been proposed that these moments increase the load on the medial compartment of the knee joint. However, this mechanism cannot be validated without taking into account the internal forces and moments generated by the muscles and ligaments, which cannot be easily measured. Previous musculoskeletal models suggest that the medial compartment of the tibiofemoral joint bears the majority of the tibiofemoral load, with the lateral compartment unloaded at times during stance. Yet these models did not utilise explicitly measured muscle activation patterns and measurements from an instrumented prosthesis which do not portray lateral compartment unloading. This paper utilised an EMG-driven model to estimate muscle forces and knee joint contact forces during healthy gait. Results indicate that while the medial compartment does bear the majority of the load during stance, muscles provide sufficient stability to counter the tendency of the external adduction moment to unload the lateral compartment. This stability was predominantly provided by the quadriceps, hamstrings, and gastrocnemii muscles, although the contribution from the tensor fascia latae was also significant. Lateral compartment unloading was not predicted by the EMG-driven model, suggesting that muscle activity patterns provide useful input to estimate muscle and joint contact forces.  相似文献   

2.
The purpose of this study was to evaluate gait retraining for reducing the knee adduction moment. Our primary objective was to determine whether subject-specific altered gaits aimed at reducing the knee adduction moment by 30% or more could be identified and adopted in a single session through haptic (touch) feedback training on multiple kinematic gait parameters. Nine healthy subjects performed gait retraining, in which data-driven models specific to each subject were determined through experimental trials and were used to train novel gaits involving a combination of kinematic changes to the tibia angle, foot progression and trunk sway angles. Wearable haptic devices were used on the back, knee and foot for real-time feedback. All subjects were able to adopt altered gaits requiring simultaneous changes to multiple kinematic parameters and reduced their knee adduction moments by 29-48%. Analysis of single parameter gait training showed that moving the knee medially by increasing tibia angle, increasing trunk sway and toeing in all reduced the first peak of the knee adduction moment with tibia angle changes having the most dramatic effect. These results suggest that individualized data-driven gait retraining may be a viable option for reducing the knee adduction moment as a treatment method for early-stage knee osteoarthritis patients with sufficient sensation, endurance and motor learning capabilities.  相似文献   

3.
Altered gait kinematics and kinetics are observed in patients with medial compartment knee osteoarthritis. Although various kinematic adaptations are proposed to be compensatory mechanisms that unload the knee, the nature of these mechanisms is presently unclear. We hypothesized that an increased toe-out angle during early stance phase of gait shifts load away from the knee medial compartment, quantified as the external adduction moment about the knee. Specifically, we hypothesized that by externally rotating the lower limb anatomy, primarily about the hip joint, toe-out gait alters the lengths of ground reaction force lever arms acting about the knee joint in the frontal and sagittal planes and transforms a portion of knee adduction moment into flexion moment. To test this hypothesis, gait data from 180 subjects diagnosed with medial compartment knee osteoarthritis were examined using two frames of reference. The first frame was attached to the tibia (reporting actual toe-out) and the second frame was attached to the laboratory (simulating no-toe-out). Four measures were compared within subjects in both frames of reference: the lengths of ground reaction force lever arms acting about the knee joint in the frontal and sagittal planes, and the adduction and flexion components of the external knee moment. The mean toe-out angle was 11.4 degrees (S.D. 7.8 degrees , range -2.2 degrees to 28.4 degrees ). Toe-out resulted in significant reductions in the frontal plane lever arm (-6.7%) and the adduction moment (-11.7%) in early stance phase when compared to the simulated no-toe-out values. These reductions were coincident with significant increases in the sagittal plane lever arm (+33.7%) and flexion moment (+25.0%). Peak adduction lever arm and moment were also reduced significantly in late stance phase (by -22.9% and -34.4%, respectively) without a corresponding increase in sagittal plane lever arm or flexion moment. These results indicate that toe-out gait in patients with medial compartment knee osteoarthritis transforms a portion of the adduction moment into flexion moment in early stance phase, suggesting that load is partially shifted away from the medial compartment to other structures.  相似文献   

4.
Previous authors have questioned the practice of normalizing the external knee adduction moment during gait to body size when investigating dynamic joint loading in knee osteoarthritis (OA). The purpose of this study was to compare the abilities of non-normalized and normalized external knee adduction moments during gait in discriminating between patients with least and greatest severity of radiographic medial compartment knee OA. Subjects with mild (n=118) and severe (n=115) medial compartment knee OA underwent three-dimensional gait analysis. The peak external knee adduction moment was calculated and kept in its original units (Nm), normalized to body mass (Nm/kg) and normalized to body weight and height (%BW × Ht). Receiver Operating Characteristic (ROC) curve analysis indicated that non-normalized values better discriminated between patients with mild and severe knee OA. The area under the ROC curve for non-normalized peak knee adduction moments (0.63) was significantly (p<0.05) greater than when normalized to body mass (0.58), or to body weight times height (0.57). Post-hoc analysis of covariance indicated the mean difference in peak knee adduction moment between OA severity groups (7.23 Nm, p=0.003) was reduced by approximately 50% (3.60 Nm, p=0.09) when adjusted for mass. These findings are consistent with the suggestion that non-normalized values are more sensitive to radiographic disease progression. We suggest including knee adduction moment values that are not normalized to body size when investigating knee OA.  相似文献   

5.
Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle–tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model.  相似文献   

6.
The external knee adduction moment is considered a surrogate measure for the medial tibiofemoral contact force and is commonly used to quantify the load reducing effect of orthopedic interventions. However, only limited and controversial data exist about the correlation between adduction moment and medial force. The objective of this study was to examine whether the adduction moment is indeed a strong predictor for the medial force by determining their correlation during gait. Instrumented knee implants with telemetric data transmission were used to measure tibiofemoral contact forces in nine subjects. Gait analyses were performed simultaneously to the joint load measurements. Skeletal kinematics, as well as the ground reaction forces and inertial parameters, were used as inputs in an inverse dynamics approach to calculate the external knee adduction moment. Linear regression analysis was used to analyze the correlation between adduction moment and medial force for the whole stance phase and separately for the early and late stance phase. Whereas only moderate correlations between adduction moment and medial force were observed throughout the whole stance phase (R2 = 0.56) and during the late stance phase (R2 = 0.51), a high correlation was observed at the early stance phase (R2 = 0.76). Furthermore, the adduction moment was highly correlated to the medial force ratio throughout the whole stance phase (R2 = 0.75). These results suggest that the adduction moment is a surrogate measure, well-suited to predicting the medial force ratio throughout the whole stance phase or medial force during the early stance phase. However, particularly during the late stance phase, moderate correlations and high inter-individual variations revealed that the predictive value of the adduction moment is limited. Further analyses are necessary to examine whether a combination of other kinematic, kinetic or neuromuscular factors may lead to a more reliable prediction of the force magnitude.  相似文献   

7.
Varus knee alignment is a risk factor for medial knee osteoarthritis and is associated with high knee adduction moments. Therefore, reducing the knee adduction moment in varus-aligned individuals with otherwise healthy knees may reduce their risk for developing osteoarthritis. A gait modification that improves dynamic knee alignment may reduce the adduction moment, and systematic training may lead to more natural-feeling and less effortful execution of this pattern. To test these hypotheses, eight healthy, varus-aligned individuals underwent a gait modification protocol. Real-time feedback of dynamic knee alignment was provided over eight training sessions, using a fading paradigm. Natural and modified gait were assessed post-training and after 1 month, and compared to pre-training natural gait. The knee adduction moment, as well as hip adduction, hip internal rotation and knee adduction angles were evaluated. At each training session, subjects rated how effortful and natural-feeling the modified pattern was to execute. Post-training, the modified pattern demonstrated an 8° increase in hip internal rotation and 3° increase in hip adduction. Knee adduction decreased 2°, and the knee adduction moment decreased 19%. Natural gait did not differ between the three visits, nor did the modified gait pattern between the post-training and 1 month visits. The modified pattern felt more natural and required less effort after training. Based on these results, gait retraining to improve dynamic knee alignment resulted in significant reductions in the knee adduction moment, primarily through hip internal rotation. Further, systematic training led to more natural-feeling and less effortful execution of the gait pattern.  相似文献   

8.
ObjectivesFootwear-generated biomechanical manipulations (e.g., wedge insoles) have been shown to reduce the magnitude of adduction moment about the knee. The theory behind wedged insoles is that a more laterally shifted location of the center of pressure reduces the distance between the ground reaction force and the center of the knee joint, thereby reducing adduction moment during gait. However, the relationship between the center of pressure and the knee adduction moment has not been studied previously. The aim of this study was to examine the association between the location of the center of pressure and the relative magnitude of the knee adduction moment during gait in healthy men.MethodsA novel foot-worn biomechanical device which allows controlled manipulation of the center of pressure location was utilized. Twelve healthy men underwent successive gait analysis testing in a controlled setting and with the device set to convey three different para-sagittal locations of the center of pressure: neutral, medial offset and lateral offset.ResultsThe knee adduction moment during the stance phase significantly correlated with the shift of the center of pressure from the functional neutral sagittal axis in the coronal plane (i.e., from medial to lateral). The moment was reduced with the lateral sagittal axis configuration and augmented with the medial sagittal axis configuration.ConclusionsThe study results confirm the hypothesis of a direct correlation between the coronal location of the center of pressure and the magnitude of the knee adduction moment.  相似文献   

9.
Cartilage contact geometry, along with joint loading, can play an important role in determining local articular cartilage tissue stress. Thus individual variations in cartilage thickness can be associated with both individual variations in joint loading associated with activities of daily living as well as individual differences in the anatomy of the contacting surfaces of the joint. The purpose of this study was to isolate the relationship between cartilage thickness predicted by individual variations in contact surface geometry based on the radii of the femur and tibia vs. cartilage thickness predicted by individual variations in joint loading. Knee magnetic resonance (MR) images and the peak knee adduction moments during walking were obtained from 11 young healthy male subjects (age 30.5+/-5.1 years). The cartilage thicknesses and surface radii of the femoral and tibial cartilage were measured in the weight-bearing regions of the medial and lateral compartments of three-dimensional models from the MR images. The ratio of contact pressure between the medial and lateral compartments was calculated from the radii of tibiofemoral contact surface geometries. The results showed that the medial to lateral pressure ratios were not correlated with the medial to lateral cartilage thickness ratios. However, in general, pressure was higher in the lateral than medial compartments and cartilage was thicker in the lateral than medial compartments. The peak knee adduction moment showed a significant positive linear correlation with medial to lateral thickness ratio in both femur (R(2)=0.43,P<0.01) and tibia (R(2)=0.32,P<0.01). The results of this study suggest that the dynamics of walking is an important factor to describe individual differences in cartilage thickness for normal subjects.  相似文献   

10.
The purpose of this study was to evaluate the effectiveness of variable-stiffness shoes in lowering the peak external knee adduction moment during walking in subjects with symptomatic medial compartment knee osteoarthritis. The influence on other lower extremity joints was also investigated. The following hypotheses were tested: (1) variable-stiffness shoes will lower the knee adduction moment in the symptomatic knee compared to control shoes; (2) reductions in knee adduction moment will be greater at faster speeds; (3) subjects with higher initial knee adduction moments in control shoes will have greater reductions in knee adduction moment with the intervention shoes; and (4) variable-stiffness shoes will cause secondary changes in the hip and ankle frontal plane moments. Seventy-nine individuals were tested at self-selected slow, normal, and fast speeds with a constant-stiffness control shoe and a variable-stiffness intervention shoe. Peak moments for each condition were assessed using a motion capture system and force plate. The intervention shoes reduced the peak knee adduction moment compared to control at all walking speeds, and reductions increased with increasing walking speed. The magnitude of the knee adduction moment prior to intervention explained only 11.9% of the variance in the absolute change in maximum knee adduction moment. Secondary changes in frontal plane moments showed primarily reductions in other lower extremity joints. This study showed that the variable-stiffness shoe reduced the knee adduction moment in subjects with medial compartment knee osteoarthritis without the discomfort of a fixed wedge or overloading other joints, and thus can potentially slow the progression of knee osteoarthritis.  相似文献   

11.
PurposeAn increased likelihood of developing obesity-related knee osteoarthritis may be associated with increased peak internal knee abduction moments (KAbM). Increases in step width (SW) may act to reduce this moment. The purpose of this study was to determine the effects of increased SW on knee biomechanics during stair negotiation of healthy-weight and obese participants.MethodsParticipants (24: 10 obese and 14 healthy-weight) used stairs and walked over level ground while walking at their preferred speed in two different SW conditions – preferred and wide (200% preferred). A 2 × 2 (group × condition) mixed model analysis of variance was performed to analyze differences between groups and conditions (p < 0.05).ResultsIncreased SW increased the loading-response peak knee extension moment during descent and level gait, decreased loading-response KAbMs, knee extension and abduction range of motion (ROM) during ascent, and knee adduction ROM during descent. Increased SW increased loading-response peak mediolateral ground reaction force (GRF), increased peak knee abduction angle during ascent, and decreased peak knee adduction angle during descent and level gait. Obese participants experienced disproportionate changes in loading-response mediolateral GRF, KAbM and peak adduction angle during level walking, and peak knee abduction angle and ROM during ascent.ConclusionIncreased SW successfully decreased loading-response peak KAbM. Implications of this finding are that increased SW may decrease medial compartment knee joint loading, decreasing pain and reducing joint deterioration. Increased SW influenced obese and healthy-weight participants differently and should be investigated further.  相似文献   

12.
The purpose of this pilot study of healthy subjects was to determine if changes in foot pressure patterns associated with a lateral wedge can predict the changes in the knee adduction moment. We tested two hypotheses: (1) increases or decreases in the knee adduction moment and ankle eversion moment due to load-altering footwear interventions can be predicted from foot pressure distribution and (2) changes in magnitude of the knee adduction moment and ankle eversion moment due to lateral wedges can be predicted from pressure distribution at the foot during walking. Fifteen healthy adults performed walking trials in three shoes: 0 degrees , 4 degrees , and 8 degrees laterally wedged. Maximum heel pressure ratio, first peak knee adduction moment, and peak ankle eversion moment were assessed using a pressure mat, motion capture system, and force plate. Increases or decreases in the knee adduction moment and ankle eversion moment were predicted well from foot pressure distribution. However, the magnitude of the pressure change did not predict the magnitude of the peak knee adduction moment change or peak ankle eversion moment change. Factors such as limb alignment or trunk motion may affect the knee adduction moment and override a direct relationship between the pressure distribution at the shoe-ground interface and the load distribution at the knee. However, changes (increases or decreases) in the peak knee adduction moment due to load-altering footwear interventions predicted from pressure distribution during walking can be important when evaluating these types of interventions from a clinical perspective.  相似文献   

13.
Musculoskeletal models are increasingly used to estimate medial and lateral knee contact forces, which are difficult to measure in vivo. The sensitivity of contact force predictions to modeling parameters is important to the interpretation and implication of results generated by the model. The purpose of this study was to quantify the sensitivity of knee contact force predictions to simultaneous errors in frontal plane knee alignment and contact locations under different dynamic conditions. We scaled a generic musculoskeletal model for N = 23 subjects’ stature and radiographic knee alignment, then perturbed frontal plane alignment and mediolateral contact locations within experimentally-possible ranges of 10° to −10° and 10 to −10 mm, respectively. The sensitivity of first peak, second peak, and mean medial and lateral knee contact forces to knee adduction angle and contact locations was modeled using linear regression. Medial loads increased, and lateral loads decreased, by between 3% and 6% bodyweight for each degree of varus perturbation. Shifting the medial contact point medially increased medial loads and decreased lateral loads by between 1% and 4% bodyweight per millimeter. This study demonstrates that realistic measurement errors of 5 mm (contact distance) or 5° (frontal plane alignment) could result in a combined 50% BW error in subject specific contact force estimates. We also show that model sensitivity varies between subjects as a result of differences in gait dynamics. These results demonstrate that predicted knee joint contact forces should be considered as a range of possible values determined by model uncertainty.  相似文献   

14.
The purpose of this feasibility study was to examine changes in frontal plane knee and hip walking biomechanics following a gait retraining strategy focused on increasing lateral trunk lean and to quantify reports of difficulty and joint discomfort when performing such a gait modification. After undergoing a baseline analysis of normal walking, 9 young, healthy participants were trained to modify their gait to exhibit small (4°), medium (8°), and large (12°) amounts of lateral trunk lean. Training was guided by the use of real-time biofeedback of the actual trunk lean angle. Peak frontal plane external knee and hip joint moments were compared across conditions. Participants were asked to report the degree of difficulty and the presence of any joint discomfort for each amount of trunk lean modification. Small (4°), medium (8°), and large (12°) amounts of lateral trunk lean reduced the peak external knee adduction moment (KAM) by 7%, 21%, and 25%, respectively, though the peak KAM was only significantly less in the medium and large conditions (p<0.001). Increased trunk lean also significantly reduced the peak external hip adduction moments (p<0.001). All participants reported at least some difficulty performing the exaggerated trunk lean pattern and three participants reported ipsilateral knee, hip, and/or lower spine discomfort. Results from this study indicate that a gait pattern with increased lateral trunk lean can effectively reduce frontal plane joint moments. Though these findings have implications for pathological populations, learning this gait pattern was associated with some difficulty and joint discomfort.  相似文献   

15.
Prominent conservative treatment options for medial-compartment knee osteoarthritis include footwear that reduces knee adduction moment (KAM) correlated with detrimental loads in the medial compartment of the knee, thus providing clinical benefit. The proposed mechanism by which they reduce KAM is a lateral shift in foot center of pressure (COP) and a consequent shortening of the knee lever arm (KLA), thereby reducing KAM, which can be simply calculated as KLA multiplied by the frontal plane ground reaction force (FP-GRF). The present study investigated this mechanism for a unique biomechanical device capable of shifting COP by means of moveable convex elements attached to the shoe. Fourteen healthy young male subjects underwent gait analysis in two COP configurations of the device for comparison: (1) laterally and (2) medially deviated. Average midstance KLA and KAM were decreased by 8.2% and 8.7%, respectively, in the lateral COP compared to medial. Ground reaction force parameters, frontal plane knee angle (FP-KA), and spine lateral flexion angle (SLF) did not differ between COP configurations. No study parameters differed for terminal stance. Linear mixed effects models showed that COP and FP-GRF components, but not FP-KA and SLF, were significant predictors of KLA. In addition, KLA and FP-GRF were significant predictors of KAM; although, FP-GRF did not change significantly with medio-lateral COP shift, while KLA did. This suggests that the mechanism by which the study device reduces KAM is primarily through shortening of KLA brought on by a lateral shift in COP.  相似文献   

16.
The relationship between static foot structure characteristics and knee joint biomechanics during walking, or the biomechanical response to wedged insoles are currently unknown. In this study, 3D foot scanning, dual X-ray absorptiometry and gait analysis methods were used to determine structural parameters of the foot and assess their relation to knee joint loading and biomechanical response to wedged insoles in 30 patients with knee osteoarthritis. In multiple linear regression models, foot fat content, height of the medial longitudinal arch and static hind foot angle were not associated with the magnitude of the knee adduction moment (R2 = 0.24, p = 0.060), knee adduction angular impulse (R2 = 0.21, p = 0.099) or 3D resultant knee moment (R2 = 0.23, p = 0.073) during gait. Furthermore, these foot structure parameters were not associated with the patients’ biomechanical response to medial or lateral wedge footwear insoles (all p < 0.01). These findings suggest that static foot structure is not associated with gait mechanics at the knee, and that static foot structure alone cannot be utilized to predict an individual’s biomechanical response to wedged footwear insoles in patients with knee osteoarthritis.  相似文献   

17.
This study investigated changes in patellofemoral (PF) kinematics for different loading configurations of the quadriceps muscle: single line of action (SL), physiological-based multiple lines of action (ML), weak vastus medialis (WVM), and weak vastus lateralis (WVL). Fourteen cadaveric knees were flexed from 15° to 120° knee flexion using a loading rig with the ability to load different heads of the quadriceps and hamstring muscles in their anatomical orientation. PF rotation in the sagittal plane) and medial lateral translation were significantly different (p<0.05) for SL and ML, with maximum differences of 2.8° and 0.9 mm at 15° and 45° knee flexion, respectively. Compared to the ML, the WVM induced an average lateral shift of 1.5 mm and an abduction rotation of 0.8°, whereas a 0.9 mm medial shift and 0.6° adduction rotation was seen when simulating a WVL. The difference in the sagittal plane resultant force orientation of 26° between SL and ML was the major contributor to the change in PF rotation in the sagittal plane, while the difference in the frontal plane resultant force orientation of both the WVM and WVL from the ML (17° medial and 8° lateral, respectively) were the primary reasons for the change in PF frontal plane rotation and medial lateral translation. The two PF kinematic were significantly different from the ML for WVM and WVL (p<0.05). The results suggest that quadriceps muscle loading configuration can have a large influence on PF kinematics during full extension but less in deeper flexion. Therefore, using quadriceps single line loading for simulating activities with low flexion angles might not be sufficient to accurately replicate the physiological condition.  相似文献   

18.
The relationships between the lengths of the ligaments and kinematics of the knee and quadriceps load, for low to physiologic levels of quadriceps loads, have not previously been studied. We investigated the effects of increasing levels of quadriceps force, necessary to balance increasing levels of externally applied flexion moments, on the kinematics of the tibiofemoral joint and on the separation distances between insertions of selected fibers of the major ligaments of the knee in twelve cadavera. Static measurements were made using a six-degree-of-freedom digitizer for flexion angles ranging from 0 to 120 deg in 15 deg increments. Quadriceps generated extension of the knee was performed by applying loads to the quadriceps tendon to equilibrate each of four magnitudes of external flexion moments equivalent to 8.33, 16.67, 25.00, and 33.33 percent of values previously reported for maximum isometric extension moments. The magnitude of quadriceps force increased linearly (p < 0.0001) as external flexion moment increased throughout the entire range of flexion. Anterior translation, internal rotation, and abduction of the tibia increased linearly (p < 0.0001, p < 0.001, p < 0.001) as external flexion moment and, hence, quadriceps load increased. For the fibers studied, the anterior cruciate ligament (p < 0.0076), posterior cruciate ligament (p < 0.0001), and medial collateral ligament (p < 0.0383) lengthened linearly while the lateral collateral ligament (p < 0.0124) shortened linearly as quadriceps load increased. Based on these results for low to physiologic levels of quadriceps loads, it is reasonable to assume that the ligament lengths or knee kinematics expected with higher quadriceps loads can be extrapolated.  相似文献   

19.

Introduction

Osteoarthritis of the knee affects millions of people. Elastic knee sleeves aim at relieving symptoms. While symptomatic improvements have been demonstrated as a consequence of elastic knee sleeves, evidence for biomechanical alterations only exists for the sagittal plane. We therefore asked what effect an elastic knee sleeve would have on frontal plane gait biomechanics.

Methods

18 subjects (8 women, 10 men) with osteoarthritis of the medial tibiofemoral joint walked over ground with and without an elastic knee sleeve. Kinematics and forces were recorded and joint moments were calculated using an inverse dynamics approach. Conditions with sleeve and without sleeve were compared with paired t-Tests.

Results

With the sleeve, knee adduction angle at ground contact was reduced by 1.9±2.1° (P = 0.006). Peak knee adduction was reduced by 1.5±1.6° (P = 0.004). The first peak knee adduction moment and positive knee adduction impulse were decreased by 10.1% (0.74±0.9 Nm•kg-1; P = 0.002) and 12.9% (0.28±0.3 Nm•s•kg-1; P < 0.004), respectively.

Conclusion

Our study provides evidence that wearing an elastic knee sleeve during walking can reduce knee adduction angles, moments and impulse in subjects with knee osteoarthritis. As a higher knee adduction moment has previously been identified as a risk factor for disease progression in patients with medial knee osteoarthritis, we speculate that wearing a knee sleeve may be beneficial for this specific subgroup.  相似文献   

20.
The aim of the study was to examine the external knee adduction moments in a group of older and younger adults while descending stairs and thus the possibility of an increased risk of knee osteoarthritis due to altered knee joint loading in the elderly. Twenty-seven older and 16 younger adults descended a purpose-built staircase. A motion capture system and a force plate were used to determine the subjects' 3D kinematics and ground reaction forces (GRF) during locomotion. Calculation of the leg kinematics and kinetics was done by means of a rigid, three-segment, 3D leg model. In the initial portion of the support phase, older adults showed a more medio-posterior GRF vector relative to the ankle joint, leading to lower ankle joint moments (P<0.05). At the knee, the older adults demonstrated a more medio-posterior directed GRF vector, increasing in knee flexion and adduction in the second part of the single support phase (P<0.05). Further, GRF magnitude was lower in the initial and higher in the mid-portions of the support phase for the elderly (P<0.05). The results show that older adults descend stairs by using the trailing leg before the initiation of the double support phase more compared to the younger ones. The consequence of this altered control strategy while stepping down is a more medially directed GRF vector increasing the magnitude of external knee adduction moment in the elderly. The observed changes between leading and trailing leg in the elderly may cause a redistribution of the mechanical load at the tibiofemoral joint, affecting the initiation and progression of knee osteoarthritis in the elderly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号