首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14906篇
  免费   1272篇
  国内免费   700篇
  2024年   21篇
  2023年   273篇
  2022年   267篇
  2021年   597篇
  2020年   669篇
  2019年   771篇
  2018年   705篇
  2017年   513篇
  2016年   516篇
  2015年   616篇
  2014年   1014篇
  2013年   1378篇
  2012年   558篇
  2011年   898篇
  2010年   548篇
  2009年   703篇
  2008年   685篇
  2007年   821篇
  2006年   673篇
  2005年   657篇
  2004年   529篇
  2003年   518篇
  2002年   467篇
  2001年   311篇
  2000年   228篇
  1999年   197篇
  1998年   200篇
  1997年   186篇
  1996年   140篇
  1995年   151篇
  1994年   133篇
  1993年   145篇
  1992年   140篇
  1991年   95篇
  1990年   72篇
  1989年   82篇
  1988年   59篇
  1987年   55篇
  1986年   34篇
  1985年   50篇
  1984年   40篇
  1983年   25篇
  1982年   33篇
  1981年   27篇
  1980年   11篇
  1979年   17篇
  1978年   13篇
  1977年   10篇
  1976年   10篇
  1974年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
MPV17 is an integral inner mitochondrial membrane protein, whose loss-of-function is linked to the hepatocerebral form of the mitochondrial-DNA-depletion syndrome, leading to a tissue-specific reduction of mitochondrial DNA and organ failure in infants. Several disease-causing mutations in MPV17 have been identified and earlier studies with reconstituted protein suggest that MPV17 forms a high conductivity channel in the membrane. However, the molecular and structural basis of the MPV17 functionality remain only poorly understood. In order to make MPV17 accessible to high-resolution structural studies, we here present an efficient protocol for its high-level production in E. coli and refolding into detergent micelles. Using biophysical and NMR methods, we show that refolded MPV17 in detergent micelles adopts a compact structure consisting of six membrane-embedded α-helices. Furthermore, we demonstrate that MPV17 forms oligomers in a lipid bilayer that are further stabilized by disulfide-bridges. In line with these findings, MPV17 could only be inserted into lipid nanodiscs of 8–12 nm in diameter if intrinsic cysteines were either removed by mutagenesis or blocked by chemical modification. Using this nanodisc reconstitution approach, we could show that disease-linked mutations in MPV17 abolish its oligomerization properties in the membrane. These data suggest that, induced by oxidative stress, MPV17 can alter its oligomeric state from a properly folded monomer to a disulfide-stabilized oligomeric pore which might be required for the transport of metabolic DNA precursors into the mitochondrial matrix to compensate for the damage caused by reactive oxygen species.  相似文献   
2.
Myoglobin (Mb) is the classic vertebrate oxygen-binding protein present in aerobic striated muscles. It functions principally in oxygen delivery and provides muscle with its characteristic red colour. Members of the Antarctic icefish family (Channichthyidae) are widely thought to be extraordinary for lacking cardiac Mb expression, a fact that has been attributed to their low metabolic rate and unusual evolutionary history. Here, we report that cardiac Mb deficit, associated with pale heart colour, has evolved repeatedly during teleost evolution. This trait affects both gill- and air-breathing species from temperate to tropical habitats across a full range of salinities. Cardiac Mb deficit results from total pseudogenization in three-spined stickleback and is associated with a massive reduction in mRNA level in two species that evidently retain functional Mb. The results suggest that near or complete absence of Mb-assisted oxygen delivery to heart muscle is a common facet of teleost biodiversity, even affecting lineages with notable oxygen demands. We suggest that Mb deficit may affect how different teleost species deal with increased tissue oxygen demands arising under climate change.  相似文献   
3.
《Free radical research》2013,47(1-3):3-10
The role of free radicals and active states of oxygen in human cancer is as yet unresolved. Various lines of evidence provide strong but inferential evidence that free radical reactions can be of crucial importance in certain carcinogenic mechanisms. A central point in considering free radical reactions in carcinogenesis is that human cancer is really a group of highly diverse diseases for which the initial causation and the progression to clinical disease occur through a wide variety of mechanisms. Furthermore, for many human cancers it appears that there are alternate pathways capable of tumor initiation and tumor progression. While for certain of these pathways free radical reactions appear necessary, it is unlikely that there are human cancers for which free radicals, or any other mechanism, are sufficient for the entire processbeginning with the genetic alteration leading to a somatic mutation and eventually resulting in clinically overt disease. It is crucial that we view free radical reactions as aong a panoply of mechanisms leading to human cancer, and consider research about the role of free radicals in cancer as opportunities to prevent the initiation or progression of human cancer.  相似文献   
4.
Transient receptor potential melastatin 4 (TRPM4) is a broadly expressed Ca2+ activated monovalent cation channel that contributes to the pathophysiology of several diseases.For this study, we generated stable CRISPR/Cas9 TRPM4 knockout (K.O.) cells from the human prostate cancer cell line DU145 and analyzed the cells for changes in cancer hallmark functions. Both TRPM4-K.O. clones demonstrated lower proliferation and viability compared to the parental cells. Migration was also impaired in the TRPM4-K.O. cells. Additionally, analysis of 210 prostate cancer patient tissues demonstrates a positive association between TRPM4 protein expression and local/metastatic progression. Moreover, a decreased adhesion rate was detected in the two K.O. clones compared to DU145 cells.Next, we tested three novel TRPM4 inhibitors with whole-cell patch clamp technique for their potential to block TRPM4 currents. CBA, NBA and LBA partially inhibited TRPM4 currents in DU145 cells. However, none of these inhibitors demonstrated any TRPM4-specific effect in the cellular assays.To evaluate if the observed effect of TRPM4 K.O. on migration, viability, and cell cycle is linked to TRPM4 ion conductivity, we transfected TRPM4-K.O. cells with either TRPM4 wild-type or a dominant-negative mutant, non-permeable to Na+. Our data showed a partial rescue of the viability of cells expressing functional TRPM4, while the pore mutant was not able to rescue this phenotype. For cell cycle distribution, TRPM4 ion conductivity was not essential since TRPM4 wild-type and the pore mutant rescued the phenotype.In conclusion, TRPM4 contributes to viability, migration, cell cycle shift, and adhesion; however, blocking TRPM4 ion conductivity is insufficient to prevent its role in cancer hallmark functions in prostate cancer cells.  相似文献   
5.
  相似文献   
6.
《Cell》2021,184(25):6081-6100.e26
  1. Download : Download high-res image (148KB)
  2. Download : Download full-size image
  相似文献   
7.
AimThe aim was to provide a dosimetric comparison between IMRT and RapidArc treatment plans with RPI index with simultaneous comparison of the treatment delivery time.BackgroundIMRT and RapidArc provide highly conformal dose distribution with good sparing of normal tissues. However, a complex spatial dosimetry of IMRT and RapidArc plans hampers the evaluation and comparison between plans calculated for the two modalities. RPI was used in this paper for treatment plan comparisons. The duration of the therapeutic session in RapidArc is reported to be shorter in comparison to therapeutic time of the other dynamic techniques. For this reasons, total treatment delivery time in both techniques was compared and discussed.Materials and methods15 patients with prostate carcinoma were randomly selected for the analysis. Two competitive treatment plans using respectively the IMRT and RapidArc techniques were computed for each patient in Eclipse planning system v. 8.6.15. RPIwin® application was used for RPI calculations for each treatment plan.Additionally, total treatment time was compared between IMRT and RapidArc plans. Total treatment time was a sum of monitor units (MU) for each treated field.ResultsThe mean values of the RPI indices were insignificantly higher for IMRT plans in comparison to rotational therapy. Comparison of the mean numbers of monitor units confirmed that the use of rotational technique instead of conventional static field IMRT can significantly reduce the treatment time.ConclusionAnalysis presented in this paper, demonstrated that RapidArc can compete with the IMRT technique in the field of treatment plan dosimetry reducing the time required for dose delivery.  相似文献   
8.
《Endocrine practice》2021,27(12):1225-1231
ObjectiveBone health in older individuals with HIV infection has not been well studied. This study aimed to compare bone mineral density (BMD), trabecular bone score (TBS), and bone markers between HIV-infected men and age- and body mass index (BMI)-matched HIV-uninfected men aged ≥60 years. We investigated the associations of risk factors related to fracture with BMD, TBS, and bone markers in HIV-infected men.MethodsThis cross-sectional study included 45 HIV-infected men receiving antiretroviral therapy and 42 HIV-uninfected men. Medical history, BMD and TBS measurements, and laboratory tests related to bone health were assessed in all the participants. HIV-related factors known to be associated with bone loss were assessed in the HIV-infected men.ResultsThe mean BMD, TBS, and osteopenia or osteoporosis prevalence were similar among the cases and controls. The HIV-infected men had significantly higher mean N-terminal propeptide of type 1 procollagen and C-terminal cross-linking telopeptide of type I collagen levels. Stepwise multiple linear regression analysis demonstrated that low BMI (lumbar spine, P = .015; femoral neck, P = .018; and total hip, P = .005), high C-terminal cross-linking telopeptide of type I collagen concentration (total hip, P = .042; and TBS, P = .010), and low vitamin D supplementation (TBS, P = .035) were independently associated with low BMD and TBS.ConclusionIn older HIV-infected men with a low fracture risk, the mean BMD and TBS were similar to those of the age- and BMI-matched controls. The mean bone marker levels were higher in the HIV group. Traditional risk factors for fracture, including low BMI, high C-terminal cross-linking telopeptide of type I collagen level, and low vitamin D supplementation, were significant predictors of low BMD and TBS.  相似文献   
9.
Paraquat (1,1'-dimethyl-4,4'-bipyridinium), a widely used non-selective herbicide, is a redox cycling agent with adverse effects on dopamine systems. Epidemiological data have shown that exposure to paraquat is one of the several risk factors for Parkinson's disease. We have already shown that cyclo(His-Pro), an endogenous cyclic dipeptide produced by the cleavage of the thyrotropin releasing hormone, has a cytoprotective effect through a mechanism involving Nrf2 activation that decreases production of reactive oxygen species and increases glutathione synthesis. Using primary neuronal cultures and PC12 cells as targets of paraquat neurotoxicity, we addressed whether and how cyclo(His-Pro) causes cellular protective response against paraquat-mediated cell death. We found that cyclo(His-Pro) attenuated reactive oxygen species production, and prevented glutathione depletion by up-regulating Nrf2 gene expression, triggering its nuclear accumulation and activating the expression of heme oxygenase1. These protective effects were abolished by RNA interference-mediated Nrf2 knock down whereas were unaffected by RNA interference-mediated Keap1 knock down. Inhibition of heme oxygenase activity decreased cyclo(His-Pro)-induced neuroprotection. These results suggest that cyclo(His-Pro), acting as a selective activator of the brain modulable Nrf2 pathway, may be a promising candidate as neuroprotective agent that act through induction of phase II genes.  相似文献   
10.
Photodynamic therapy (PDT) is a treatment method using light and photosensitizers (PSs), which is categorized as a non-invasive surgery treatment for cancers. When the tumor is exposed to a specific light, the PSs become active and generate reactive oxygen species (ROS), mainly singlet oxygen which kills nearby cancer cells. PDT is becoming more widely recognized as a valuable treatment option for localized cancers and pre-cancers of skin as it has no long-term effects on the patient. But, due to the limited penetration rate of light into the skin and other organs, PDT can’t be used to treat large cancer cells or cancer cells that have grown deeply into the skin or other organs. Hence, in this study, our focus centers on synthesizing glucose-conjugated phthalocyanine (Pc) compatible with near-infrared (NIR) irradiation as second-generation photosensitizer, so that PDT can be used in a wider range to treat cancers without obstacles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号