首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, there has been the difficulty in finding more effective therapies against cancer with less systemic side effects. Therefore Photodynamic Therapy is a novel approach for a more tumor selective treatment.Photodynamic Therapy (PDT) that makes use of a nontoxic photosensitizer (PS), which, upon activation with light of a specific wavelength in the presence of oxygen, generates oxygen radicals that elicit a cytotoxic response1. Despite its approval almost twenty years ago by the FDA, PDT is nowadays only used to treat a limited number of cancer types (skin, bladder) and nononcological diseases (psoriasis, actinic keratosis)2.The major advantage of the use of PDT is the ability to perform a local treatment, which prevents systemic side effects. Moreover, it allows the treatment of tumors at delicate sites (e.g. around nerves or blood vessels). Here, an intraoperative application of PDT is considered in osteosarcoma (OS), a tumor of the bone, to target primary tumor satellites left behind in tumor surrounding tissue after surgical tumor resection. The treatment aims at decreasing the number of recurrences and at reducing the risk for (postoperative) metastasis.In the present study, we present in vitro PDT procedures to establish the optimal PDT settings for effective treatment of widely used OS cell lines that are used to reproduce the human disease in well established intratibial OS mouse models. The uptake of the PS mTHPC was examined with a spectrophotometer and phototoxicity was provoked with laser light excitation of mTHPC at 652 nm to induce cell death assessed with a WST-1 assay and by the counting of surviving cells. The established techniques enable us to define the optimal PDT settings for future studies in animal models. They are an easy and quick tool for the evaluation of the efficacy of PDT in vitro before an application in vivo.  相似文献   

2.
Light-mediated therapies such as photodynamic therapy (PDT) are considered emerging cancer treatment strategies. However, there are still lots of defect with common photosensitizers (PSs), such as short emission wavelength, weak photostability, poor cell permeability, and low PDT efficiency. Therefore, it is very important to develop high-performance PSs. Recently, luminogens with aggregation-induced emission (AIE) characteristics and red/near-infrared (NIR) emissive have been reported as promising PSs for image-guided cancer therapy, due to them being able to prevent autofluorescence in physiological environments, their enhanced fluorescence in the aggregated state, and generation of reactive oxygen species (ROS). Herein, we developed PSs named TBTCPM and MTBTCPM with donor–acceptor (D–A) structures, strong red/NIR, excellent targeting specificities to good cell permeability, and high photostability. Interestingly, both of them can efficiently generate ROS under white light irradiation and possess excellent killing effect on cancer cells. This study, thus, not only demonstrates applications in cell image-guided PDT cancer therapy performances but also provides strategy for construction of AIEgens with long emission wavelengths.  相似文献   

3.
Photodynamic therapy (PDT) is a selective treatment modality against cancer. PDT is based on the preferential retention of photosensitizers (PSs), in the tumour and subsequent light exposure which activates the PS and generates reactive oxygen species. Multimodality therapy is increasingly relevant in cancer treatment and PDT has been shown as an effective adjuvant to other anti-cancer modalities. The present study reports on the combination of PDT and an epidermal growth factor receptor (EGFR) specific tyrosine kinase inhibitor (TKI), Tyrphostin AG1478. The combination was studied in two cell lines; A-431 and NuTu-19, expressing EGFR and sensitive to Tyrphostin treatment, but with different sensitivity towards photochemical EGFR damage. A-431 cells were treated with the PS meso-tetraphenylporphine with 2 sulfonate groups on adjacent phenyl rings (TPPS(2a)) in order to target mainly the endo/lysosomal compartments (18 h incubation followed by a 4 h chase in drug-free medium) or the plasma membrane (30 min incubation) upon light exposure. The EGFR was inhibited after PDT in A-431 cells only when TPPS(2a) was located on the plasma membrane, but both treatment regimes resulted in synergistic inhibition of cell growth when combined with Tyrphostin. TPPS(2a) treatment of NuTu-19 cells, designed for endo/lysosomal localization, followed by light attenuated EGFR phosphorylation but resulted in additive or antagonistic effects on cell growth when Tyrphostin was administered prior to or after PDT respectively. It was therefore concluded that photochemical damage of EGFR does not predict the treatment outcome when PDT is combined with Tyrphostin.  相似文献   

4.
Photodynamic therapy (PDT) is a clinically approved therapeutic modality for the treatment of diseases characterized by uncontrolled cell proliferation, mainly cancer. It involves the selective uptake of a photosensitizer (PS) by neoplastic tissue, which is able to produce reactive oxygen species upon irradiation with light, leading to tumor regression. Here a synergistic cell photoinactivation is reported based on the simultaneous administration of two PSs, zinc(II)-phthalocyanine (ZnPc) and the cationic porphyrin meso-tetrakis(4-N-methylpyridyl)porphine (TMPyP) in three cell lines (HeLa, HaCaT and MCF-7), using very low doses of PDT. We detected changes from predominant apoptosis (without cell detachment) to predominant necrosis, depending on the light dose used (2.4 and 3.6 J/cm2, respectively). Analysis of changes in cytoskeleton components (microtubules and F-actin), FAK protein, as well as time-lapse video microscopy evidenced that HeLa cells were induced to undergo apoptosis, without losing adhesion to the substrate. Moreover, 24 h after intravenous injection into tumor-bearing mice, ZnPc and TMPyP were preferentially accumulated in the tumor area. PDT with combined treatment produced significant retardation of tumor growth. We believe that this combined and highly efficient strategy (two PSs) may provide synergistic curative rates regarding conventional photodynamic treatments (with one PS alone).  相似文献   

5.
Photosensitizers (PSs) are of crucial importance in the effectiveness of photodynamic therapy (PDT) for cancer. Due to their high reactive oxygen species production and strong absorption in the wavelength range between 650 and 850 nm, where tissue light penetration is rather high, phthalocyanines (Pcs) have been studied as PSs of excellence. In this work, we report the evaluation of a phthalocyanine surrounded by a carbohydrate shell of sixteen galactose units distributed in a dendritic manner (PcGal16) as a new and efficient third generation PSs for PDT against two bladder cancer cell lines, HT-1376 and UM-UC-3. Here, we define the role of galacto-dendritic units in promoting the uptake of a Pc through interaction with GLUT1 and galectin-1. The photoactivation of PcGal16 induces cell death by generating oxidative stress. Although PDT with PcGal16 induces an increase on the activity of antioxidant enzymes immediately after PDT, bladder cancer cells are unable to recover from the PDT-induced damage effects for at least 72 h after treatment. PcGal16 co-localization with galectin-1 and GLUT1 and/or generation of oxidative stress after PcGal16 photoactivation induces changes in the levels of these proteins. Knockdown of galectin-1 and GLUT1, via small interfering RNA (siRNA), in bladder cancer cells decreases intracellular uptake and phototoxicity of PcGal16. The results reported herein show PcGal16 as a promising therapeutic agent for the treatment of bladder cancer, which is the fifth most common type of cancer with the highest rate of recurrence of any cancer.  相似文献   

6.
Genetically encoded photosensitizers (PSs), e.g. ROS generating proteins, correspond to a novel class of PSs that are highly desirable for biological and medical applications since they can be used in combination with a variety of genetic engineering manipulations allowing for precise spatio‐temporal control of ROS production within living cells and organisms. In contrast to the commonly used chemical PSs, they can be modified using genetic engineering approaches and targeted to particular cellular compartments and cell types. Mini Singlet Oxygen Generator (miniSOG), a small flavoprotein capable of singlet oxygen production upon blue light irradiation, was initially reported as a high contrast probe for correlative light electron microscopy (CLEM) without the need of exogenous ligands, probes or destructive permeabilizing detergents. Further miniSOG was successfully applied for chromophore‐assisted light inactivation (CALI) of proteins, as well as for photo‐induced cell ablation in tissue cultures and in Caenorhabditis elegans. Finally, a novel approach of immunophotosensitizing has been developed, exploiting the specificity of mini‐antibodies or selective scaffold proteins and photo‐induced cytotoxicity of miniSOG, which is particularly promising for selective non‐invasive photodynamic therapy of cancer (PDT) due to the spatial selectivity and locality of destructive action compared to other methods of oncotherapy.

  相似文献   


7.
Direct tumor damage mechanisms of photodynamic therapy   总被引:6,自引:0,他引:6  
Photodynamic therapy (PDT) is a clinically approved and rapidly developing cancer treatment regimen. It is a minimally invasive two-stage procedure that requires administration of a photosensitizing agent followed by illumination of the tumor with visible light usually generated by laser sources. A third component of PDT is molecular oxygen which is required for the most effective antitumor effects. In the presence of the latter, light of an appropriate wavelength excites the photosensitizer thereby producing cytotoxic intermediates that damage cellular structures. PDT has been approved in many countries for the treatment of lung, esophageal, bladder, skin and head and neck cancers. The antitumor effects of this treatment result from the combination of direct tumor cell photodamage, destruction of tumor vasculature and activation of an immune response. The mechanisms of the direct photodamage of tumor cells, the signaling pathways that lead to apoptosis or survival of sublethaly damaged cells, and potential novel strategies of improving the antitumor efficacy of PDT are discussed.  相似文献   

8.
Photodynamic therapy (PDT) is a clinically approved treatment for the ocular condition age-related macular degeneration, and certain types of cancer. PDT is also under investigation for other ocular, as well as, immune-mediated and cardiovascular indications. PDT is a two step procedure. In the first step, the photosensitizer, usually a porphyrin derivative, is administered and taken up by cells. The second step involves activation of the photosensitizer with a specific wavelength of visible light. Exposure to light of an activating wavelength generates reactive oxygen species within cells containing photosensitizer. PDT with porphyrin photosensitizers induces rapid apoptotic cell death, an event which may be attributed to the close association of these compounds with mitochondria. Thus, PDT is an attractive method to treat ailments such as cancer, viral infections, autoimmune disorders and certain cardiovascular diseases in which the apoptotic program may be compromised. The present review examines the cellular events triggered at lethal and sublethal PDT doses and their relationship to the subsequent effects exerted upon cells.  相似文献   

9.
Photodynamic therapy (PDT) is a recently developed antitumor modality utilizing the generation of reactive oxygen species (ROS), through light irradiation of photosensitizers (PSs) localized in tumor. Interference with proper functioning of endoplasmic reticulum (ER) by ER-targeting PDT is a newly proposed strategy to achieve tumor cell death. The aim of this study is to establish a multifunctional model to screen and assess ER-targeting PSs based on luciferase reporters system. Upregulation of GRP78 is a biomarker for the onset of ER stress. CHOP is a key initiating player in ER stress-induced cell death. Here, the most sensitive fragments of GRP78 and CHOP promoters responding to ER-targeting PDT were mapped and cloned into pGL3-basic vector, forming −702/GRP78-Luc and −443/CHOP-Luc construct, respectively. We demonstrated that −702/GRP78-Luc expression can be used to indicate the ER-targeting of PSs, meanwhile estimate the ROS level induced by low-dose ER-targeting PDT. Moreover, the luciferase signaling of −443/CHOP-Luc showed highly consistence with apoptosis rate caused by ER-targeting PDT, suggesting that −443/CHOP-Luc can evaluate the antitumor properties of PSs. Hypericin, Foscan® and methylene blue were applied to verify the sensitivity and reliability of our model. These results proved that GRP78-CHOP model may be suitable to screen ER-targeting photosensitive compounds with lower cost and higher sensitivity than traditional ways.  相似文献   

10.
Photodynamic therapy (PDT) is a treatment for cancer and non-cancerous lesions involving light and a sensitizing drug, a so-called photosensitizer. Photosensitizers for PDT usually accumulate in tumour tissues with some selectivity. Thus, malignant and abnormal cells can be destroyed by PDT which acts by producing singlet oxygen and possible other reactive oxygen species. However, the efficiency of PDT is often limited by shallow light penetration into tissue. In some cases one treatment modality cannot cure a patient because of treatment limitations and/or side effects. In recent years, many preclinical studies have indicated that the therapeutic outcome of PDT can be improved, doses and side effects lowered by combination with immunotherapy. Most experiments have been done with animals and cell lines. This review summarizes the current knowledge about different immunotherapeutic approaches which can be used to improve effectiveness and extend the applications of PDT in clinics.  相似文献   

11.
Photodynamic therapy (PDT) employs non-toxic dyes called photosensitizers (PSs), which absorb visible light to give the excited singlet state, followed by the long-lived triplet state that can undergo photochemistry. In the presence of ambient oxygen, reactive oxygen species (ROS), such as singlet oxygen and hydroxyl radicals are formed that are able to kill cancer cells, inactivate microbial pathogens and destroy unwanted tissue. Although there are already several clinically approved PSs for various disease indications, many studies around the world are using animal models to investigate the further utility of PDT. The present review will cover the main groups of animal models that have been described in the literature. Cancer comprises the single biggest group of models including syngeneic mouse/rat tumours that can either be subcutaneous or orthotopic and allow the study of anti-tumour immune response; human tumours that need to be implanted in immunosuppressed hosts; carcinogen-induced tumours; and mice that have been genetically engineered to develop cancer (often by pathways similar to those in patients). Infections are the second biggest class of animal models and the anatomical sites include wounds, burns, oral cavity, ears, eyes, nose etc. Responsible pathogens can include Gram-positive and Gram-negative bacteria, fungi, viruses and parasites. A smaller and diverse group of miscellaneous animal models have been reported that allow PDT to be tested in ophthalmology, atherosclerosis, atrial fibrillation, dermatology and wound healing. Successful studies using animal models of PDT are blazing the trail for tomorrow''s clinical approvals.  相似文献   

12.
Photodynamic therapy (PDT) is a cancer treatment involving systemic administration of a tumor-localizing photosensitizer; this, when activated by the appropriate wavelength of light, interacts with molecular oxygen to form a toxic, short-lived species known as singlet oxygen, which is thought to mediate cellular death. Photofrin, a complex mixture of porphyrin oligomers has recently received FDA approval for the photodynamic treatment of esophageal and endobronchial carcinoma, but its photodynamic and toxicity profiles are far from ideal. In the present study we evaluated a series of porphyrin-based PSs, some of which newly synthesized by our group, with the aim to identify agents with more favorable characteristics. For the most effective compounds in the porphyrin series, chlorin analogs were also synthesized; for comparison, the screening also included Photofrin. Cytotoxicity studies were performed by the MTT assay on a cultured human colon adenocarcinoma cell line (HCT116); the results indicate that the 3,4,5-trimethoxyphenyl, 3OH- and 4OH-phenyl, and the sulfonamidophenyl derivatives are significantly more potent than Photofrin. Flow cytometric studies and fluorescence microscopy indicate that in PDT-treated HCT116 cells death occurs mainly by apoptosis. In summary, novel PSs described in the present study, belonging both to the porphyrin and chlorin series, have proven more effective than Photofrin in killing colon cancer cells in vitro; extending these observation to in vivo models, particularly regarding the deeper reaching chlorin derivatives, might lead to significant advances in the development of tumor PDT.  相似文献   

13.
Photodynamic therapy (PDT) is a novel cancer treatment. It involves the activation of a photosensitizer (PS) with light of specific wavelength, which interacts with molecular oxygen to generate singlet oxygen and other reactive oxygen species (ROS) that lead to tumor cell death. When a tumor is treated with PDT, in addition to affect cancer cells, the extracellular matrix and the other cellular components of the microenvironment are altered and finally this had effects on the tumor cells survival. Furthermore, the heterogeneity in the availability of nutrients and oxygen in the different regions of a tridimensional tumor has a strong impact on the sensitivity of cells to PDT. In this review, we summarize how PDT affects indirectly to the tumor cells, by the alterations on the extracellular matrix, the cell adhesion and the effects over the immune response. Also, we describe direct PDT effects on cancer cells, considering the intratumoral role that autophagy mediated by hypoxia-inducible factor 1 (HIF-1) has on the efficiency of the treatment.  相似文献   

14.
Photodynamic therapy (PDT) is a cancer treatment based on the interaction of a photosensitizer, light and oxygen. PDT with the endogenous photosensitizer, protoporphyrin IX (PpIX) induced by 5-aminolevulinic acid (ALA) or its derivatives is a modification of this treatment modality with successful application in dermatology. However, the mechanism of cell destruction by ALA-PDT has not been elucidated. In this study a human T-cell lymphoma Jurkat cell line was treated with PDT using hexaminolevulinate (HAL, hexylester of ALA). Four hours following treatment nearly 80% of the cells exhibited typical apoptotic features. Mitochondrial pro-apoptotic proteins were evaluated by Western blots in subcellular fractionated samples. PDT caused cytosolic translocation of cytochrome c and nuclear redistribution of apoptosis-inducing factor (AIF), but the release of mitochondrial Smac/DIABLO, Omi/HtrA2 and EndoG was not observed. The release of cytochrome c was followed by the cleavage of caspase-9 and caspase-3 as well as its downstream substrates, together with oligonucleosomal DNA fragmentation. The pan-caspases inhibitor, z-VAD.fmk, prevented oligonucleosomal DNA fragmentation, but failed to inhibit PDT-mediated apoptosis. The apoptotic induction by AIF-mediated caspase-independent pathway was also found after HAL-PDT with large-scale DNA fragmentation in the presence of z-VAD.fmk. These results demonstrate that cytochrome c-mediated caspase-dependent pathway and AIF-induced caspase-independent pathway are simultaneously involved in the apoptotic induction by PDT. When the cytochrome c-induced caspase-dependent pathway is blocked, the cells go into apoptosis via AIF-mediated pathway, clearly demonstrating that the cytochrome c-mediated caspase-dependent pathway is not required for such apoptotic induction. This finding may have an impact on improved PDT effectiveness.  相似文献   

15.
Photodynamic therapy (PDT) is an approved medical technique to treat certain forms of cancer. It has been used to complement traditional anticancer modalities such as surgery, chemotherapy or radiotherapy, and in certain cases, to replace these treatments. One critical parameter of PDT is the photosensitizer (PS); historically, a purely organic macrocyclic tetrapyrrole-based structure. This short review surveys two recent clinical examples of metal complexes, namely TOOKAD®-Soluble and TLD-1433, which have ideal photophysical properties to act as PDT PSs. We highlight the important role played by the metal ions in the PS for PDT activity.  相似文献   

16.
Reactive oxygen-dependent production of novel photochemotherapeutic agents.   总被引:3,自引:0,他引:3  
S Pervaiz 《FASEB journal》2001,15(3):612-617
The reactive nature of species derived from oxygen, such as singlet oxygen and hydrogen peroxide, has been exploited in the clinical setting for targeting bacteria, viruses, and tumor cells by photodynamic excitation of a variety of chromophores. This modality, termed photodynamic therapy (PDT), is currently being used to treat some forms of cancer. However, the applicability of conventional PDT is limited due to the absolute dependence on simultaneous exposure of the target to the photoactive compound and light. In 1990, we demonstrated that the need for simultaneous exposure of the biological target to light and photosensitizer could be circumvented by prior exposure (activation) of the sensitizer molecule to light and its subsequent use as any other anti-cancer or anti-viral drug. By dint of the nature of the protocol, this process was termed preactivation. Since then, the generation of biologically active molecules in vitro by preactivation has been validated using a variety of chromophores, such as merocyanine 540, Photofrin II, and naphthalimide. Here we briefly review the role of reactive oxygen species in the photodynamic effect, and provide an explanation for the mechanism of preactivation. We propose that photo-oxidation not only provides a novel means for the generation of biologically active molecules, but could also explain, at least in part the mechanism of conventional PDT. It is likely that the light-dependent breakdown of the chromophore to generate novel active compounds, in addition to reactive oxygen species, also contributes to the photodynamic damage observed on simultaneous exposure of the chromophore and target tissue to light during PDT.-Pervaiz, S. Reactive oxygen-dependent production of novel photochemotherapeutic agents.  相似文献   

17.
Photodynamic therapy (PDT) is a relatively new type of treatment in cancer, based on a photosensitizer, visible light and molecular oxygen. Reactive oxygen species are generated, causing tumor cells death by apoptosis or necrosis. Significant nowadays research efforts are focused on finding new photosensitizers with antineoplastic activity and an acceptable toxicological profile. Although consistent information exists regarding PDT in solid tumors, relatively few data are available for PDT of blood cancers. Therefore, we carried out a comparative study on lymphoblastic K562 cells and human normal peripheral blood mononuclear cells (PBMC) treated at a density of 2 x 10(5) cells/mL with 5,10,15,20-tetra-sulphophenyl-porphyrin (TSPP) and then irradiated with He-Ne laser light (lamda = 632.8 nm). The following cell functions were investigated: viability, multiplication, RNA synthesis, total RNA levels and apoptosis. After irradiation, the viability of TSPP-loaded tumor cells decrease, the multiplication rate and the total RNA level are drastically reduced and cells undergo apoptosis. TSPP alone loaded into cells but not activated by irradiation, does not affect these cell parameters. Human normal PBMC subjected to TSPP loading and laser-irradiation develop a different cellular response, their viability and proliferative capacity not being altered by experimental PDT. Accordingly, it appears that TSPP is a non-aggressive compound for cellular physiology and becomes cytotoxic only by irradiation; moreover laser-activated TSPP affects only cells that have a tumoral pattern.  相似文献   

18.
Photodynamic therapy (PDT) uses exogenously administered photosensitizers activated by light to induce cell death or modulation of immunological cascades, presumably via formation of reactive oxygen species (ROS). 5-Aminolevulinic acid (ALA) mediated photosensitization is increasingly used for the treatment of nonmelanoma skin cancer and other indications including benign skin disorders. Long-term side effects of this investigational modality are presently unknown. Just as tumor treatments such as ionizing radiation and chemotherapy can cause secondary tumor induction, PDT may potentially have a carcinogenic risk. Evaluation of the biological effects of ALA in absence of activating light and analysis of the mechanism of ALA-PDT and porphyrin-type photosensitizers mediated photosensitization indicate that this therapy has a pro-oxidant and genotoxic potential. However, porphyrin type molecules also possess antioxidant and antimutagenic properties. ALA-PDT delays photocarcinogenesis in mice, and topical ALA alone does not increase skin cancer incidence in these animals. Patients with increased tissue levels of ALA have an increased incidence of internal carcinoma, however, it is not clear whether this relationship is casual or causal. There is no evidence indicating higher rates of skin cancer in patients with photosensitivity diseases due to presence of high protoporphyrin IX (PP) levels in skin. Overall, the presently available data indicate that the risk for secondary skin carcinoma after topical ALA-PDT seems to be low, but further studies must be carried out to evaluate the carcinogenic risk of ALA-PDT in conditions predisposed to skin cancer.  相似文献   

19.
We describe daylight responsive silver (Ag) doped semiconductor nanoparticles of zinc oxide (DSNs) for photodynamic therapy (PDT) against Leishmania. The developed materials were characterized by X-ray diffraction analysis (XRD), Rutherford backscattering (RBS), diffused reflectance spectroscopy (DRS), and band-gap analysis. The Ag doped semiconductor nanoparticles of zinc oxide were PEGylated to enhance their biocompatibility. The DSNs demonstrated effective daylight response in the PDT of Leishmania protozoans, through the generation of reactive oxygen species (ROS) with a quantum yield of 0.13 by nondoped zinc oxide nanoparticles (NDSN) whereas 0.28 by DSNs. None of the nanoparticles have shown any antileishmanial activity in dark, confirming that only ROS produced in the daylight were involved in the killing of leishmanial cells. Furthermore, the synthesized nanoparticles were found biocompatible. Using reactive oxygen species scavengers, cell death was attributable mainly to 77–83% singlet oxygen and 18–27% hydroxyl radical. The nanoparticles caused permeability of the cell membrane, leading to the death of parasites. Further, the uptake of nanoparticles by Leishmania cells was confirmed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). We believe that these DSNs are widely applicable for the PDT of leishmaniasis, cancers, and other infections due to daylight response.  相似文献   

20.
Photodynamic treatment is a minimally invasive and clinically approved procedure for eliminating selected malignant cells with activation of a photosensitizer agent at a specific light. Little is known, however, about the phototoxic properties of curcumin, as a natural phenolic compound, against different types of cancers. It is generally accepted that cellular damage occurs during photo treatment. There is a limitation in using of curcumin as a drug due to its low solubility, but nanoparticles such as anionic nanoclays or layered double hydroxide (LDH) could overcome it. The aim of this study was to investigate cellular responses to curcumin-LDH nanoparticles after photodynamic treatment of MDA-MB-231 human breast cancer cells. For this purpose, the MDA-MB-231 human breast cancer cell line treated with curcumin-LDH nanoparticle and then irradiated (photodynamic treatment). After irradiation, lactate dehydrogenase assay, clonogenic cell survival, cell death mechanisms such as autophagy and apoptosis were determined. Cell cycle distribution after photodynamic therapy (PDT) and also intracellular reactive oxygen species (ROS) generation were measured. The result showed that curcumin-LDH–PDT has a cytotoxic and antiprolifrative effect on MDA-MB-231 human breast cancer cells. Curcumin-LDH–PDT induced autophagy, apoptosis, and G0/G1 cell cycle arrest in human breast cancer cell line. Intracellular ROS increased in MDA-MB-231 cancer cell line after treatment with curcumin-LDH along with irradiation. The results suggest that curcumin-LDH nanoparticle could be considered as a novel approach in the photodynamic treatment of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号