首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   7篇
  国内免费   5篇
  2022年   1篇
  2021年   1篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   1篇
  2015年   7篇
  2014年   13篇
  2013年   4篇
  2012年   10篇
  2011年   8篇
  2010年   8篇
  2009年   5篇
  2008年   8篇
  2007年   8篇
  2006年   11篇
  2005年   8篇
  2004年   3篇
  2003年   1篇
  2000年   1篇
  1998年   7篇
  1997年   9篇
  1996年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有130条查询结果,搜索用时 839 毫秒
1.
Abstract: Neuronally differentiated PC12 cells undergo synchronous apoptosis when deprived of nerve growth factor (NGF). Here we show that NGF withdrawal induces actinomycin D- and cycloheximide-sensitive caspase (ICE-like) activity. The peptide inhibitor of caspase activity, N -acetyl-Asp-Glu-Val-Asp-aldehyde, was more potent than acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone in preventing NGF withdrawal-induced apoptosis, suggesting an important role for caspase-3 (CPP32)-like proteases. We observed a peak of reactive oxygen species (ROS) 6 h after NGF withdrawal. ROS appear to be required for apoptosis, because cell death is prevented by the free radical spin trap, N-tert -butyl-α-phenylnitrone, and the antioxidant, N -acetylcysteine. ROS production was blocked by actinomycin D, cycloheximide, and caspase protease inhibitors, suggesting that ROS generation is downstream of new mRNA and protein synthesis and activation of caspases. Forced expression of either BCL-2 or the BCL-2-binding protein BAG-1 blocked NGF withdrawal-induced apoptosis, activation of caspases, and ROS generation, showing that they function upstream of caspases. Coexpression of BCL-2 and BAG-1 was more protective than expression of either protein alone.  相似文献   
2.
High-molecular weight particles have been isolated from the sponge Geodica cydonium. In the "native" from these particles consist of a spherical center and have 25-30 filaments attached to it. The core structure of the particles is assembled of a central circle and 25 radially-arranged filaments. The core structure is obtained from the entire structure by incubation in a medium, containing a non-ionic detergent and EDTA. The molecular weight of the enitre structure was in the range of 1.4 X 10(9) daltons or more and of the core structure 6.1 x 10(8) daltons. Two functional proteins are released from the "native" particles: the aggregation factor and the sialytransferase.  相似文献   
3.
4.
Disrupted-in-schizophrenia 1 (DISC1) is a multifunctional scaffold protein which plays an important role in neurogenesis and neural development in the adult brain, especially in the dentate gyrus (DG) of the hippocampus. Accumulated research has unveiled the role of DISC1 in several aspects of neural development and neurogenesis, such as neuronal maturation, proliferation, migration, positioning, differentiation, dendritic growth, axonal outgrowth, and synaptic plasticity. Studies on the function of this protein have explored multiple facets, including variants and missense mutants in genetics, proteins interactivity and signaling pathways in molecular biology, and pathogenesis and treatment targets of major mental illness, and more. In this review, we present several signaling pathways discussed in recent research, such as the AKT signaling pathway, GABA signaling pathway, GSK3β signaling pathway, Wnt signaling pathway, and NMDA-R signaling pathway. DISC1 interacts, directly or indirectly, with these signaling pathways and they co-regulate the process of adult neurogenesis in the hippocampus.  相似文献   
5.
近年来细胞穿膜肽(cell-penetrating peptides,CPP)在生物医药领域被广泛应用,它为生物分子的胞内递送提供了有效的策略。关注CPP在肿瘤治疗及疾病诊断中的作用,并重点介绍其在肿瘤靶向治疗和医学影像诊断中的应用及优势。同时,根据CPP在药物传递系统中的特点,改进CPP存在的不足,扩大其联合用药的可能性,这也成为CPP研究的热点。对CPP及其在肿瘤等疾病的诊断及治疗中的应用作一综述,并简述其优化及改进策略,以期促进CPP在临床中的应用。  相似文献   
6.
Gao C  Che LW  Chen J  Xu XJ  Chi ZQ 《Cell research》2003,13(1):29-34
The present study was designed to determine the changes of phosphorylation of cAMP-response element binding protein(CREB)in hippocampus induced by ohmefentanyl stereoisomers(F9202 and F9204) in conditioned place preference(CPP)paradigm.The results showed that mice receiving F9202 and F9204 displayed obvious CPP.They could all significantly stimulate CREB phosphorylation and maintained for a long time without affecting total CREB protein levels.The effect of F9204 was similar to morphine which effect was more potent and longer than F9202.We also examined the effects of ketamine,a noncompetitive N-mthyl-D-asartate receptor(NR)antagonist,on morphine-,F9202-and F9204-induced CPP and phosphorylation of CREB in hippocampus.Ketamine could suppress not only the place preference but also the phosphorylation of CREB produced by morphine,F9202 and F9204.These findings suggest that alterations in the phosphorylation of CREB be relevant to opiates signaling and the development of opiates dependence.NR antagonists may interfere with opiates dependence and may have potential therapeutic implications.  相似文献   
7.
Lipid nanoparticles (LNP) modified with cell-penetrating peptides (CPP) were prepared for the delivery of small interfering RNA (siRNA) into cells. Lipid derivatives of CPP derived from protamine were newly synthesized and used to prepare CPP-decorated LNP (CPP-LNP). Encapsulation of siRNA into CPP-LNP improved the stability of the siRNA in serum. Fluorescence-labeled siRNA formulated in CPP-LNP was efficiently internalized into B16F10 murine melanoma cells in a time-dependent manner, although that in LNP without CPP was hardly internalized into these cells. In cells transfected with siRNA in CPP-LNP, most of the siRNA was distributed in the cytoplasm of these cells and did not localize in the lysosomes. Analysis of the endocytotic pathway indicated that CPP-LNP were mainly internalized via macropinocytosis and heparan sulfate-mediated endocytosis. CPP-LNP encapsulating siRNA effectively induced RNA interference-mediated silencing of reporter genes in B16F10 cells expressing luciferase and in HT1080 human fibrosarcoma cells expressing enhanced green fluorescent protein. These data suggest that modification of LNP with the protamine-derived CPP was effective to facilitate internalization of siRNA in the cytoplasm and thereby to enhance gene silencing.  相似文献   
8.

Introduction

Type I cGMP-dependent protein kinase (PKGIα) belongs to the family of cyclic nucleotide-dependent protein kinases and is one of the main effectors of cGMP. PKGIα is involved in regulation of cardiac contractility, vasorelaxation, and blood pressure; hence, the development of potent modulators of PKGIα would lead to advances in the treatment of a variety of cardiovascular diseases. Aim: Representatives of ARC-type compounds previously characterized as potent inhibitors and high-affinity fluorescent probes of PKA catalytic subunit (PKAc) were tested towards PKGIα to determine that ARCs could serve as activity regulators and sensors for the latter protein kinase both in vitro and in complex biological systems. Results: Structure–activity profiling of ARCs with PKGIα in vitro demonstrated both similarities as well as differences to corresponding profiling with PKAc, whereas ARC-903 and ARC-668 revealed low nanomolar displacement constants and inhibition IC50 values with both cyclic nucleotide-dependent kinases. The ability of ARC-based fluorescent probes to penetrate cell plasma membrane was demonstrated in the smooth muscle tissue of rat cerebellum isolated arteries, and the compound with the highest affinity in vitro (ARC-903) showed also potential for in vivo applications, fully abolishing the PKG1α-induced vasodilation.  相似文献   
9.
BACKGROUND INFORMATION: Application of CPPs (cell-penetrating peptides) constitutes a promising strategy for the intracellular delivery of therapeutic molecules. The non-covalent approach based on the amphipathic peptide MPG has been successfully used to improve the delivery of biologically active macromolecules, both in cellulo and in vivo, through a mechanism independent of the endosomal pathway and mediated by the membrane potential. RESULTS: In the present study, we have investigated the first step of the cellular uptake mechanism of MPG and shown that both MPG and MPG-cargo complexes interact with the extracellular matrix through the negatively charged heparan sulfate proteoglycans. We demonstrated that initiation of cellular uptake constitutes a highly dynamic mechanism where the binding of MPG or the MPG-cargo to the extracellular matrix is rapidly followed by a remodelling of the actin network associated with the activation of the GTPase Rac1. We suggest that MPG-induced clustering of the glycosaminoglycan platform constitutes the 'onset' of the cellular uptake mechanism, thereby increasing membrane dynamics and membrane fusion processes. This process favours cell entry of MPG or MPG-DNA complexes, which is further controlled by the ability of MPG to induce a local membrane destabilization. CONCLUSIONS: Although CPPs are taken up through different pathways and mechanisms, the initial step involves electrostatic interactions with the glycosaminoglycan platform, and the dynamics of associated membrane microdomains can be generalized to most non-viral delivery systems.  相似文献   
10.
Protein C inhibitor (PCI) is a serpin with broad protease reactivity. It binds glycosaminoglycans and certain phospholipids that can modulate its inhibitory activity. PCI can penetrate through cellular membranes via binding to phosphatidylethanolamine. The exact mechanism of PCI internalization and the intracellular role of the serpin are not well understood. Here we showed that testisin, a glycosylphosphatidylinositol-anchored serine protease, cleaved human PCI and mouse PCI (mPCI) at their reactive sites as well as at sites close to their N terminus. This cleavage was observed not only with testisin in solution but also with cell membrane-anchored testisin on U937 cells. The cleavage close to the N terminus released peptides rich in basic amino acids. Synthetic peptides corresponding to the released peptides of human PCI (His1–Arg11) and mPCI (Arg1–Ala18) functioned as cell-penetrating peptides. Because intact mPCI but not testisin-cleaved mPCI was internalized by Jurkat T cells, a truncated mPCI mimicking testisin-cleaved mPCI was created. The truncated mPCI lacking 18 amino acids at the N terminus was not taken up by Jurkat T cells. Therefore our model suggests that testisin or other proteases could regulate the internalization of PCI by removing its N terminus. This may represent one of the mechanisms regulating the intracellular functions of PCI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号