首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3634篇
  免费   353篇
  国内免费   109篇
  2024年   4篇
  2023年   65篇
  2022年   56篇
  2021年   123篇
  2020年   180篇
  2019年   267篇
  2018年   208篇
  2017年   117篇
  2016年   117篇
  2015年   127篇
  2014年   225篇
  2013年   227篇
  2012年   119篇
  2011年   163篇
  2010年   144篇
  2009年   172篇
  2008年   181篇
  2007年   204篇
  2006年   168篇
  2005年   162篇
  2004年   147篇
  2003年   118篇
  2002年   106篇
  2001年   59篇
  2000年   49篇
  1999年   55篇
  1998年   31篇
  1997年   35篇
  1996年   33篇
  1995年   23篇
  1994年   24篇
  1993年   20篇
  1992年   26篇
  1991年   13篇
  1990年   20篇
  1989年   15篇
  1988年   15篇
  1987年   7篇
  1986年   15篇
  1985年   18篇
  1984年   47篇
  1983年   46篇
  1982年   47篇
  1981年   37篇
  1980年   32篇
  1979年   24篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有4096条查询结果,搜索用时 31 毫秒
1.
Varicella zoster virus (VZV) causes varicella upon first exposure and may reactivate later in life into herpes zoster (HZ), with a risk that is thought to be reduced by re-exposures to VZV. Given the decades-long time scales of reactivation and its dependence on the accumulation of re-exposure episodes, adopting a long-term perspective may be useful to correctly interpret current epidemiological trends of VZV. In this study, we investigate the possible impact of demographic changes on varicella and HZ in Spain, using an age-structured mathematical model informed with historical demographic data and calibrated against age-specific profiles of varicella seroprevalence and HZ incidence data. The model qualitatively reproduces the remarkable growth of HZ incidence observed in Spain between 1997 and 2004, before the introduction of varicella vaccination programmes. We demonstrate that this growth may be partially ascribed to the reduction of varicella circulation that followed the overall decline of the birth rate in the twentieth century. Model predictions further suggest that, even under the most optimistic projections, HZ incidence will continue its rise until at least 2040. Considering the effect of demographic changes can help interpreting variations in epidemiological trends of HZ, contributing to a more accurate evaluation of vaccination programmes against VZV.  相似文献   
2.
The mechanism of the self-regulation of gene expression in living cells is generally explained by considering complicated networks of key-lock relationships, and in fact there is a large body of evidence on a hugenumber of key-lock relationships. However, in the present article we stress that with the network hypothesis alone it is impossible to fully explain the mechanism of self-regulation in life. Recently, it has been established that individual giant DNA molecules, larger than several tens of kilo base pairs, undergo a large discrete transition in their higher-order structure. It has become clear that nonspecific weak interactions with various chemicals, suchas polyamines, small salts, ATP and RNA, cause on/off switching in the higher-order structure of DNA. Thus, the field parameters of the cellular environment should play important roles in the mechanism of self-regulation, in addition to networks of key and locks. This conformational transition induced by field parameters may be related to rigid on/off regulation, whereas key-lock relationships may be involved in a more flexible control of gene expression.  相似文献   
3.
Nanoparticles in solution offer unique electrical, mechanical and thermal properties due to their physical presence and interaction with the state of dispersion. This work is aimed to study the effects of hydroxyapatite (HA) nanoparticles on the devitrification and recrystallization events of two important cryoprotective solutions used in cell and tissue preservation namely glycerol (60% w/w) and PEG-600 (50% w/w). HA nanoparticles (20, 40 or 60 nm) were incorporated into solutions at the content of 0.1% or 0.5% (w/w), and were studied by differential scanning calorimeter (DSC) and cryomicroscopy. The presence of nanoparticles does not change the glass transition temperatures and melting temperatures of quenched solutions, but significantly affects the behavior of devitrification and recrystallization upon warming. Cryomicroscopic investigation showed the complex interactions among solution type, nanoparticle size and nanoparticle content, which apparently influence ice crystal growth or recrystallization in the quenched dispersions. These findings have significant implications for biomaterial cryopreservation, cryosurgery, and food manufacturing. The complexity of ice crystal growth kinetics in nanoparticle-containing dispersions remains to be poorly understood at the moment.  相似文献   
4.
The biogeographic history of the Chihuahuan Desert is known to be complex, and there is evidence of the effects of physiographic and climatic events in species diversification and demographic population changes in many taxa. Here, using DNA sequence data, we studied the influence of the physiographic and climatic events that occurred in the Chihuahuan Desert during the Pliocene–Pleistocene transition on the speciation and evolutionary history of the sister lizard species Sceloporus cyanostictus and S. gadsdeni. First, based on mtDNA and nDNA sequences, we estimated the divergence times of the sister species. Then, based on mtDNA sequences, we investigated the demographic history of both species within a phylogeographic framework. The divergence time was inferred to be 1.48 Mya, date that corresponds to the existence of a large lake in the Mapimian subprovince, between the current geographic locations of S. cyanostictus and S. gadsdeni. This lake could have acted as a barrier, leading to the speciation of both species. For the demographic history of the two species, we identified two distinct patterns: the population expansion of S. gadsdeni within the Last Glacial Maximum and the potential population decline of S. cyanostictus. Our results can be used as a guide for the study of other aspects that could be critical to developing conservation actions that ensure the survival of not only S. gadsdeni and S. cyanostictus, but also other co‐occurring lizard species.  相似文献   
5.
6.
7.
The Bacterial flagellar filament can undergo a polymorphic phase transition in response to both mechanical and chemical variations in vitro and in vivo environments. Under mechanical stimuli, such as viscous flow or forces induced by motor rotation, the filament changes its phase from left-handed normal (N) to right-handed semi-coiled (SC) via phase nucleation and growth. Our detailed mechanical analysis of existing experiments shows that both torque and bending moment contribute to the filament phase transition. In this paper, we establish a non-convex and non-local continuum model based on the Ginzburg-Landau theory to describe main characteristics of the filament phase transition such as new-phase nucleation, growth, propagation and the merging of neighboring interfaces. The finite element method (FEM) is adopted to simulate the phase transition under a displacement-controlled loading condition (rotation angle and bending deflection). We show that new-phase nucleation corresponds to the maximum torque and bending moment at the stuck end of the filament. The hysteresis loop in the loading and unloading curves indicates energy dissipation. When the new phase grows and propagates, torque and bending moment remain static. We also find that there is a drop in load when the two interfaces merge, indicating a concomitant reduction in the interfacial energy. Finally, the interface thickness is governed by the coefficients of the gradient of order parameters in the non-local interface energy. Our continuum theory and the finite element method provide a method to study the mechanical behavior of such biomaterials.  相似文献   
8.
At room temperature, the chlorophyll (Chl) a fluorescence induction (FI) kinetics of plants, algae and cyanobacteria go through two maxima, P at ∼ 0.2-1 and M at ∼ 100-500 s, with a minimum S at ∼ 2-10 s in between. Thus, the whole FI kinetic pattern comprises a fast OPS transient (with O denoting origin) and a slower SMT transient (with T denoting terminal state). Here, we examined the phenomenology and the etiology of the SMT transient of the phycobilisome (PBS)-containing cyanobacterium Synechococcus sp PCC 7942 by modifying PBS → Photosystem (PS) II excitation transfer indirectly, either by blocking or by maximizing the PBS → PS I excitation transfer. Blocking the PBS → PS I excitation transfer route with N-ethyl-maleimide [NEM; A. N. Glazer, Y. Gindt, C. F. Chan, and K.Sauer, Photosynth. Research 40 (1994) 167-173] increases both the PBS excitation share of PS II and Chl a fluorescence. Maximizing it, on the other hand, by suspending cyanobactrial cells in hyper-osmotic media [G. C. Papageorgiou, A. Alygizaki-Zorba, Biochim. Biophys. Acta 1335 (1997) 1-4] diminishes both the PBS excitation share of PS II and Chl a fluorescence. Here, we show for the first time that, in either case, the slow SMT transient of FI disappears and is replaced by continuous P → T fluorescence decay, reminiscent of the typical P → T fluorescence decay of higher plants and algae. A similar P → T decay was also displayed by DCMU-treated Synechococcus cells at 2 °C. To interpret this phenomenology, we assume that after dark adaptation cyanobacteria exist in a low fluorescence state (state 2) and transit to a high fluorescence state (state 1) when, upon light acclimation, PS I is forced to run faster than PS II. In these organisms, a state 2 → 1 fluorescence increase plus electron transport-dependent dequenching processes dominate the SM rise and maximal fluorescence output is at M which lies above the P maximum of the fast FI transient. In contrast, dark-adapted plants and algae exist in state 1 and upon illumination they display an extended P → T decay that sometimes is interrupted by a shallow SMT transient, with M below P. This decay is dominated by a state 1 → 2 fluorescence lowering, as well as by electron transport-dependent quenching processes. When the regulation of the PBS → PS I electronic excitation transfer is eliminated (as for example in hyper-osmotic suspensions, after NEM treatment and at low temperature), the FI pattern of Synechococcus becomes plant-like.  相似文献   
9.
In the non-heterocyst, marine cyanobacterium Trichodesmium nitrogen fixation is confined to the photoperiod and occurs coevally with oxygenic photosynthesis although nitrogenase is irreversibly inactivated by oxygen. In previous studies it was found that regulation of photosynthesis for nitrogen fixation involves Mehler reaction and various activity states with reversible coupling of photosynthetic components. We now investigated these activity states in more detail. Spectrally resolved fluorescence kinetic measurements of single cells revealed that they were related to alternate uncoupling and coupling of phycobilisomes from and to the photosystems, changing the effective cross-section of PSII. Therefore, we isolated and purified the phycobiliproteins of Trichodesmium via ion exchange chromatography and recorded their UV/VIS absorption, fluorescence excitation and fluorescence emission spectra. After describing these spectra by mathematical equations via the Gauss-Peak-Spectra method, we used them to deconvolute the in vivo fluorescence spectra of Trichodesmium cells. This revealed that the contribution of different parts of the phycobilisome antenna to fluorescence quenching changed during the daily activity cycle, and that individual phycobiliproteins can be reversibly coupled to the photosystems, while the expression levels of these proteins did not change much during the daily activity cycle. Thus we propose that variable phycobilisome coupling plays a key role in the regulation of photosynthesis for nitrogen fixation in Trichodesmium.  相似文献   
10.
Dry mixtures of sonicated vesicles of DPPC and trehalose which contained a maximum of 0.2 mol water/mol lipid were examined by differential scanning calorimetry, Fourier transform infrared spectroscopy and freeze-fracture electron microscopy. Samples of dry DPPC and trehalose prepared from aqueous solution had a minimum Tm of 24°C for the gel to liquid-crystalline transition provided that the vesicles were dried with trehalose while the lipid was in liquid-crystalline phase. This low transition is compared to a transition of 105–112°C for dry pure DPPC and of 42°C for hydrated pure DPPC. The present work is an extension of earlier work from this laboratory using both other lipids and other methods of preparation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号