首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wetting and capillary condensation are thermodynamic phenomena in which the special affinity of interfaces to a thermodynamic phase, relative to the stable bulk phase, leads to the stabilization of a wetting phase at the interfaces. Wetting and capillary condensation are here proposed as mechanisms that in membranes may serve to induce special lipid phases in between integral membrane proteins leading to long-range lipid-mediated joining forces acting between the proteins and hence providing a means of protein organization. The consequences of wetting in terms of protein aggregation and protein clustering are derived both within a simple phenomenological theory as well as within a concrete calculation on a microscopic model of lipid-protein interactions that accounts for the lipid bilayer phase equilibria and direct lipid-protein interactions governed by hydrophobic matching between the lipid bilayer hydrophobic thickness and the length of the hydrophobic membrane domain. The theoretical results are expected to be relevant for optimizing the experimental conditions required for forming protein aggregates and regular protein arrays in membranes.  相似文献   

2.
3.
Mattress model of lipid-protein interactions in membranes.   总被引:21,自引:16,他引:5       下载免费PDF全文
A thermodynamic model is proposed for describing phase diagrams of mixtures of lipid bilayers and amphiphilic proteins or polypeptides in water solution. The basic geometrical variables of the model are the thickness of the hydrophobic region of the lipid bilayer and the length of the hydrophobic region of the proteins. The model incorporates the elastic properties of the lipid bilayer and the proteins, as well as indirect and direct lipid-protein interactions expressed in terms of the geometrical variables. The concept of mismatch of the hydrophobic regions of the lipids and proteins is an important ingredient of the model. The general phase behavior is calculated using simple real solution theory. The phase behavior turns out to be quite rich and is used to discuss previous experiments on planar aggregations of proteins in phospholipid bilayers and to propose a systematic study of synthetic amphiphilic polypeptides in bilayers of different thicknesses. The model is used to interpret the influence of the lipid-protein interaction on calorimetric measurements and on local orientational order as determined by deuterium nuclear magnetic resonance.  相似文献   

4.
5.
A model recently used to study lipid-protein interactions in one-component lipid bilayers (Sperotto and Mouritsen, 1991 a, b) has been extended in order to include two different lipid species characterized by different acyl-chain lengths. The model, which is a statistical mechanical lattice model, assumes that hydrophobic matching between lipid-bilayer hydrophobic thickness and hydrophobic length of the integral protein is an important aspect of the interactions. By means of Monte Carlo simulation techniques, the lateral distribution of the two lipid species near the hydrophobic protein-lipid interface in the fluid phase of the bilayer has been derived. The results indicate that there is a very structured and heterogeneous distribution of the two lipid species near the protein and that the protein-lipid interface is enriched in one of the lipid species. Out of equilibrium, the concentration profiles of the two lipid species away from the protein interface are found to develop a long-range oscillatory behavior. Such dynamic membrane heterogeneity may be of relevance for determining the physical factors involved in lipid specificity of protein function.  相似文献   

6.
The host lipid bilayer is increasingly being recognized as an important non-specific regulator of membrane protein function. Despite considerable progress the interplay between hydrophobic coupling and lipid ordering is still elusive. We use electron spin resonance (ESR) to study the interaction between the model protein gramicidin and lipid bilayers of varying thickness. The free energy of the interaction is up to −6 kJ/mol; thus not strongly favored over lipid-lipid interactions. Incorporation of gramicidin results in increased order parameters with increased protein concentration and hydrophobic mismatch. Our findings also show that at high protein:lipid ratios the lipids are motionally restricted but not completely immobilized. Both exchange on and off rate values for the lipid ↔ gramicidin interaction are lowest at optimal hydrophobic matching. Hydrophobic mismatch of few Å results in up to 10-fold increased exchange rates as compared to the ‘optimal’ match situation pointing to the regulatory role of hydrophobic coupling in lipid-protein interactions.  相似文献   

7.
The phases of simple systems involving one type of protein (lysozyme or cytochrome c) and one type of lipid (phosphatidic acid) have been characterized by X-ray crystallography, chemical analysis and spin-labeling technique as a function of temperature. They are of the lamellar type with alternative protein monolayers and lipid bilayers. According to the pH, two types of lamellar phases are obtained, one where the lipid-protein interactions are mainly hydrophobic, the other where they are electrostatic. In both cases, a phase transition occurs as temperature is lowered, between a high temperature phase, where all the lipids are in the liquid-like state, and another phase where some lipid chains are rigid. In the case of the phases with electrostatic interaction, it is shown that the onset of the order-disorder transition is shifted towards low temperature as compared with the homologous lipid-water phase and that the protein content of the phase decreases as the ratio of the liquid to rigid hydrocarbon chains decreases. This leads us to suggest that in the systems studied in this work the proteins interact only with lipid in the liquid-like state. In the case of the phases with hydrophobic interaction, it is shown that the extent of hydrophobic interaction between protein and lipid increases as the unsaturation of the hydrocarbon chains increases. The onset of the order-disorder transition shows a greater shift towards low temperature than the one observed in the case of the phase with electrostatic interaction.  相似文献   

8.
Membrane proteins are regulated by the lipid bilayer composition. Specific lipid-protein interactions rarely are involved, which suggests that the regulation is due to changes in some general bilayer property (or properties). The hydrophobic coupling between a membrane-spanning protein and the surrounding bilayer means that protein conformational changes may be associated with a reversible, local bilayer deformation. Lipid bilayers are elastic bodies, and the energetic cost of the bilayer deformation contributes to the total energetic cost of the protein conformational change. The energetics and kinetics of the protein conformational changes therefore will be regulated by the bilayer elasticity, which is determined by the lipid composition. This hydrophobic coupling mechanism has been studied extensively in gramicidin channels, where the channel-bilayer hydrophobic interactions link a "conformational" change (the monomer<-->dimer transition) to an elastic bilayer deformation. Gramicidin channels thus are regulated by the lipid bilayer elastic properties (thickness, monolayer equilibrium curvature, and compression and bending moduli). To investigate whether this hydrophobic coupling mechanism could be a general mechanism regulating membrane protein function, we examined whether voltage-dependent skeletal-muscle sodium channels, expressed in HEK293 cells, are regulated by bilayer elasticity, as monitored using gramicidin A (gA) channels. Nonphysiological amphiphiles (beta-octyl-glucoside, Genapol X-100, Triton X-100, and reduced Triton X-100) that make lipid bilayers less "stiff", as measured using gA channels, shift the voltage dependence of sodium channel inactivation toward more hyperpolarized potentials. At low amphiphile concentration, the magnitude of the shift is linearly correlated to the change in gA channel lifetime. Cholesterol-depletion, which also reduces bilayer stiffness, causes a similar shift in sodium channel inactivation. These results provide strong support for the notion that bilayer-protein hydrophobic coupling allows the bilayer elastic properties to regulate membrane protein function.  相似文献   

9.
Biological membranes are complex and highly cooperative structures. To relate biomembrane structure to their biological function it is often necessary to consider simpler systems. Lipid bilayers composed of one or two lipid species, and with embedded proteins, provide a model system for biological membranes. Here we present a mesoscopic model for lipid bilayers with embedded proteins, which we have studied with the help of the dissipative particle dynamics simulation technique. Because hydrophobic matching is believed to be one of the main physical mechanisms regulating lipid-protein interactions in membranes, we considered proteins of different hydrophobic length (as well as different sizes). We studied the cooperative behavior of the lipid-protein system at mesoscopic time- and lengthscales. In particular, we correlated in a systematic way the protein-induced bilayer perturbation, and the lipid-induced protein tilt, with the hydrophobic mismatch (positive and negative) between the protein hydrophobic length and the pure lipid bilayer hydrophobic thickness. The protein-induced bilayer perturbation was quantified in terms of a coherence length, xi(P), of the lipid bilayer hydrophobic thickness profile around the protein. The dependence on temperature of xi(P), and the protein tilt-angle, were studied above the main-transition temperature of the pure system, i.e., in the fluid phase. We found that xi(P) depends on mismatch, i.e., the higher the mismatch is, the longer xi(P) becomes, at least for positive values of mismatch; a dependence on the protein size appears as well. In the case of large model proteins experiencing extreme mismatch conditions, in the region next to the so-called lipid annulus, there appears an undershooting (or overshooting) region where the bilayer hydrophobic thickness is locally lower (or higher) than in the unperturbed bilayer, depending on whether the protein hydrophobic length is longer (or shorter) than the pure lipid bilayer hydrophobic thickness. Proteins may tilt when embedded in a too-thin bilayer. Our simulation data suggest that, when the embedded protein has a small size, the main mechanism to compensate for a large hydrophobic mismatch is the tilt, whereas large proteins react to negative mismatch by causing an increase of the hydrophobic thickness of the nearby bilayer. Furthermore, for the case of small, peptidelike proteins, we found the same type of functional dependence of the protein tilt-angle on mismatch, as was recently detected by fluorescence spectroscopy measurements.  相似文献   

10.
A theoretical study of lipid-protein interactions in bilayers.   总被引:1,自引:1,他引:0       下载免费PDF全文
H L Scott  Jr  T J Coe 《Biophysical journal》1983,42(3):219-224
We present a theoretical study of the effect of different types of lipid-protein interactions on the thermodynamic properties of protein-containing lipid bilayers. The basis of this work is a theoretical model for pure lipid bilayer phase transitions developed earlier by Scott. Simple assumptions on the nature of the lipid conformations near a protein strongly affect the predicted properties of the model. Here we consider (a) random protein-lipid contacts, (b) enhanced contact between protein and lipid with a number of gauche bonds, and (c) enhanced contact between protein and all-trans but tilted lipid chains. Comparison of predicted results with experimental data seems to favor point c above but, by itself point c does not work well at larger protein concentrations. The results are discussed in the light of spectroscopic data, lipid-protein (plus annular lipid) miscibility, and interprotein forces.  相似文献   

11.
12.
Participation of electrostatic and other noncovalent interactions in the binding of tricyclic antidepressants (TCAs) to the lipid bilayers was estimated from pH-dependencies of imipramine, desipramine, amitriptyline and nortriptyline binding to the lipid bilayers prepared from different phospholipids, both electroneutral and acidic. The binding was studied using a radioligand binding assay. It was found that the membrane phospholipid composition and methylation of the acyl side chain of TCA has a decisive effect on participation of particular noncovalent interactions in the binding. Apparent high-affinity binding of TCAs to the phosphatidylcholine or phosphatidylethanolamine membranes are achieved mainly by incorporation of uncharged drug molecules into the hydrophobic core of the bilayers. Van der Waals forces and hydrophobic effect are responsible for this binding. Both charged and uncharged drug molecules bind to phosphatidylserine membranes, therefore coulomb- or ion-induced dipole interactions play a role in these binding. Different spatial distribution of charged residues within the interface causes different electrostatic interactions between charged TCAs and vesicles formed from phosphatidylserine and phosphatidylinositol. The data supports the hypothesis under which TCAs could have effect on affective disorders partially via binding to the lipid part of the membrane and following changes of lipid-protein interactions.  相似文献   

13.
The phases of simple systems involving one type of protein (lysozyme or cytochrome c) and one type of lipid (phosphatidic acid) have been characterized by X-ray crystallography, chemical analysis and spin-labeling technique as a function of temperature. They are of the lamellar type with alternative protein monolayers and lipid bilayers. According to the pH, two types of lamellar phases are obtained, one where the lipid-protein interactions are mainly hydrophobic, the other where they are electrostatic. In both cases, a phase transition occurs as temperature is lowered, between a high temperature phase, where all the lipids are in the liquid-like state, and another phase where some lipid chains are rigid. In the case of the phases with electrostatic interaction, it is shown that the onset of the order-disorder transition is shifted towards low temperature as compared with the homologous lipid-water phase and that the protein content of the phase decreases as the ratio of the liquid to rigid hydrocarbon chains decreases. This leads us to suggest that in the systems studied in this work the proteins interact only with lipid in the liquid-like state. In the case of the phases with hydrophobic interaction, it is shown that the extent of hydrophobic interaction between protein and lipid increases as the unsaturation of the hydrocarbon chains increases. The onset of the order-disorder transition shows a greater shift towards low temperture than the one observed in the case of the phase with electrostatic interaction.  相似文献   

14.
Photoactivation of rhodopsin in lipid bilayers results within milliseconds in a metarhodopsin I (MI)-metarhodopsin II (MII) equilibrium that is very sensitive to the lipid composition. It has been well established that lipid bilayers that are under negative curvature elastic stress from incorporation of lipids like phosphatidylethanolamines (PE) favor formation of MII, the rhodopsin photointermediate that is capable of activating G protein. Furthermore, formation of the MII state is favored by negatively charged lipids like phosphatidylserine and by lipids with longer hydrocarbon chains that yield bilayers with larger membrane hydrophobic thickness. Cholesterol and rhodopsin-rhodopsin interactions from crowding of rhodopsin molecules in lipid bilayers shift the MI-MII equilibrium towards MI. A variety of mechanisms seems to be responsible for the large, lipid-induced shifts between MI and MII: adjustment of the thickness of lipid bilayers to rhodopsin and adjustment of rhodopsin helicity to the thickness of bilayers, curvature elastic deformations in the lipid matrix surrounding the protein, direct interactions of PE headgroups and polyunsaturated hydrocarbon chains with rhodopsin, and direct or lipid-mediated interactions between rhodopsin molecules. This article is part of a Special Issue entitled: Membrane protein structure and function.  相似文献   

15.
Lipid molecules bound to membrane proteins are resolved in some high-resolution structures of membrane proteins. An analysis of these structures provides a framework within which to analyse the nature of lipid-protein interactions within membranes. Membrane proteins are surrounded by a shell or annulus of lipid molecules, equivalent to the solvent layer surrounding a water-soluble protein. The lipid bilayer extends right up to the membrane protein, with a uniform thickness around the protein. The surface of a membrane protein contains many shallow grooves and protrusions to which the fatty acyl chains of the surrounding lipids conform to provide tight packing into the membrane. An individual lipid molecule will remain in the annular shell around a protein for only a short period of time. Binding to the annular shell shows relatively little structural specificity. As well as the annular lipid, there is evidence for other lipid molecules bound between the transmembrane α-helices of the protein; these lipids are referred to as non-annular lipids. The average thickness of the hydrophobic domain of a membrane protein is about 29 Å, with a few proteins having significantly smaller or greater thicknesses than the average. Hydrophobic mismatch between a membrane protein and the surrounding lipid bilayer generally leads to only small changes in membrane thickness. Possible adaptations in the protein to minimise mismatch include tilting of the helices and rotation of side chains at the ends of the helices. Packing of transmembrane α-helices is dependent on the chain length of the surrounding phospholipids. The function of membrane proteins is dependent on the thickness of the surrounding lipid bilayer, sometimes on the presence of specific, usually anionic, phospholipids, and sometimes on the phase of the phospholipid.  相似文献   

16.
Lipid molecules bound to membrane proteins are resolved in some high-resolution structures of membrane proteins. An analysis of these structures provides a framework within which to analyse the nature of lipid-protein interactions within membranes. Membrane proteins are surrounded by a shell or annulus of lipid molecules, equivalent to the solvent layer surrounding a water-soluble protein. The lipid bilayer extends right up to the membrane protein, with a uniform thickness around the protein. The surface of a membrane protein contains many shallow grooves and protrusions to which the fatty acyl chains of the surrounding lipids conform to provide tight packing into the membrane. An individual lipid molecule will remain in the annular shell around a protein for only a short period of time. Binding to the annular shell shows relatively little structural specificity. As well as the annular lipid, there is evidence for other lipid molecules bound between the transmembrane alpha-helices of the protein; these lipids are referred to as non-annular lipids. The average thickness of the hydrophobic domain of a membrane protein is about 29 A, with a few proteins having significantly smaller or greater thicknesses than the average. Hydrophobic mismatch between a membrane protein and the surrounding lipid bilayer generally leads to only small changes in membrane thickness. Possible adaptations in the protein to minimise mismatch include tilting of the helices and rotation of side chains at the ends of the helices. Packing of transmembrane alpha-helices is dependent on the chain length of the surrounding phospholipids. The function of membrane proteins is dependent on the thickness of the surrounding lipid bilayer, sometimes on the presence of specific, usually anionic, phospholipids, and sometimes on the phase of the phospholipid.  相似文献   

17.
Contradictory results have been reported with respect to the depth of penetration and the orientation of pulmonary surfactant protein SP-B in phospholipid membranes and its relative selectivity to interact with anionic over zwitterionic phospholipid species. In the present study we have re-evaluated lipid-protein interactions of SP-B by analysing F?rster resonance energy transfer (FRET) efficiencies, obtained from time-resolved measurements, from the single tryptophan in SP-B to different fluorescently labelled phospholipids in matrix bilayers made of either pure phosphatidylcholine (POPC) or the full lipid extract obtained from purified surfactant. In the background of POPC membranes SP-B exhibits a certain level of selectivity for anionic fluorescent phospholipids over the corresponding zwitterionic analogues, but apparently no preference for phosphatidylglycerol over other anionic species such as phosphatidylserine. No selectivity was detected in membranes made of full surfactant lipids, indicating that specific lipid-protein binding sites could already be occupied by endogenous anionic phospholipids. Furthermore, we have analysed the fit of two different models of how SP-B could be orientated with respect to phospholipid membrane surfaces to the FRET data. The FRET results are consistent with topology models in which the protein has a superficial orientation, with no regions of exclusion by the protein to the access of phospholipids, both in POPC membranes and in membranes made of the whole surfactant lipid fraction. This discards a deep penetration of the protein into the core of bilayers and suggests that most hydrophobic segments of SP-B could participate in protein-protein instead of lipid-protein interactions.  相似文献   

18.
The effect of the covalent attachment of a myristolyl moiety to the N-terminal glycine residue in proteins, N-myristoylation, on lipid-protein interactions was investigated in a model system using magnetic resonance spectroscopic methods. Two peptides with sequences conserved among known N-myristoylated proteins were chosen for this study. Using two-dimensional nuclear magnetic resonance techniques, it was shown that N-myristolylation results in an aggregation of both peptides in solution, although they lack well defined folded conformations in solution either when chemically N-myristolyated or when nonacylated. The interaction of the acylated peptides with lipid bilayers was investigated using spin label electron spin resonance and 2H NMR techniques. The results show that when bound to membranes, the covalently linked myristoyl chain of one of the peptides is directly inserted into or anchored to the lipid bilayer. The binding of the other peptide with membranes is effected by interactions between amino acid residues and the phospholipid headgroups. In this case, the covalently linked myristoyl moiety is most likely not in direct contact with the acyl chains of the host lipid bilayer. Rather, the N-myristoyl chains stabilize the peptide aggregate by forming a hydrophobic core. Measurements of peptide binding to membranes showed that N-myristoylation affects both the lipid:peptide stoichiometry at saturation and the equilibrium binding constant, in a manner that is consistent with the structural information obtained by magnetic resonance methods.  相似文献   

19.
Protein and protein-lipid interactions, with and within specific areas in the cell membrane, are critical in order to modulate the cell signaling events required to maintain cell functions and viability. Biological bilayers are complex, dynamic platforms, and thus in vivo observations usually need to be preceded by studies on model systems that simplify and discriminate the different factors involved in lipid-protein interactions. Fluorescence microscopy studies using giant unilamellar vesicles (GUVs) as membrane model systems provide a unique methodology to quantify protein binding, interaction, and lipid solubilization in artificial bilayers. The large size of lipid domains obtainable on GUVs, together with fluorescence microscopy techniques, provides the possibility to localize and quantify molecular interactions. Fluorescence Correlation Spectroscopy (FCS) can be performed using the GUV model to extract information on mobility and concentration. Two-photon Laurdan Generalized Polarization (GP) reports on local changes in membrane water content (related to membrane fluidity) due to protein binding or lipid removal from a given lipid domain. In this review, we summarize the experimental microscopy methods used to study the interaction of human apolipoprotein A-I (apoA-I) in lipid-free and lipid-bound conformations with bilayers and natural membranes. Results described here help us to understand cholesterol homeostasis and offer a methodological design suited to different biological systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号