首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   5篇
  国内免费   1篇
  2023年   3篇
  2022年   1篇
  2021年   7篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   8篇
  2014年   47篇
  2013年   41篇
  2012年   16篇
  2011年   19篇
  2010年   13篇
  2009年   16篇
  2008年   19篇
  2007年   35篇
  2006年   18篇
  2005年   31篇
  2004年   11篇
  2003年   19篇
  2002年   10篇
  2001年   9篇
  2000年   6篇
  1998年   2篇
  1997年   1篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1991年   1篇
  1989年   1篇
排序方式: 共有358条查询结果,搜索用时 15 毫秒
1.
The open reading frames of 17 connexins from Syrian hamster (using tissues) and 16 connexins from the Chinese hamster cell line V79, were fully (Cx30, Cx31, Cx37, Cx43 and Cx45) or partially sequenced. We have also detected, and partially sequenced, seven rat connexins that previously were unavailable. The expression of connexin genes was examined in some hamster organs and cultured hamster cells, and compared with wild-type mouse and the cancer-prone Min mouse. Although the expression patterns were similar for most organs and connexins in hamster and mouse, there were also some prominent differences (Cx29 and 30.3 in testis; Cx31.1 and 32 in eye; Cx46 in brain, kidney and testis; Cx47 in kidney). This suggests that some connexins have species-specific expression profiles. In contrast, there were minimal differences in expression profiles between wild type and Min mice. Species-specific expression profiles should be considered in attempts to make animal models of human connexin-associated diseases.  相似文献   
2.
Abstract: That many cells express more than one connexin (Cx) led us to examine whether Cxs other than Cx32 are expressed in the PNS. In addition to Cx32 mRNA, Cx43 and Cx26 mRNAs were detected in rat sciatic nerve by northern blot analysis. Cx43 mRNA, but not Cx26 mRNA, was expressed in both the primary Schwann cell culture and immortalized Schwann cell line (T93). The steady-state levels of the Cx43 mRNA in the primary Schwann cell culture increased 2.0-fold with 100 µ M forskolin, whereas that of P0 increased 7.0-fold. Immunoreactivity to Cx43 was detected on western blots of cultured Schwann cells, T93 cells, and sciatic nerves but not on blots of PNS myelin. Immunohistochemical study using human peripheral nerves revealed that anti-Cx43 antibody stained cytoplasm around nucleus of Schwann cells but not myelin, confirming western blot results. Although P0 expression was markedly decreased by crush injury of the sciatic nerves, Cx43 expression showed no apparent change. Developmental profiles showed that Cx43 expression in the sciatic nerve increased rapidly after birth, peaked at about postnatal day 6, and then decreased gradually to a low level. In adult rats, the Cx43 mRNA value was much lower than that of Cx32. These findings suggest that Cx43 is localized in Schwann cell bodies and that, compared with P0, its expression is less influenced by axonal contact and cyclic AMP levels. The high expression on postnatal day 6 indicates that Cx43 may be related to PNS myelination. Cx43 is another gap junction, but its function appears to differ from that of Cx32, as judged by the differences in their localization and developmental profiles.  相似文献   
3.
The smooth muscle cell is the predominant cell type of the arterial media. In the adult vascular system, smooth muscle cells are found primarily in the contractile phenotype, but following injury or during atherosclerotic plaque formation the secretory synthetic phenotype is expressed. Recently it has been shown that gap junction connexin43 messenger RNA levels are six times higher in cultured smooth muscle cells in the synthetic phenotype than in intact aorta. We have modulated rabbit aortic smooth muscle cells in culture between the synthetic phenotype and one resembling the contractile phenotype, and correlated gap junction expression with phenotype. A dual labelling technique with antibodies against smooth muscle myosin and a synthetic peptide constructed to match a portion of the connexin43 gap junction protein was used for these experiments. Gap junctions are numerous between synthetic phenotype cells but few are observed between contractile cells. Rat aortic smooth muscle cells were also cultured and the growth and structure of gap junctions followed in the synthetic phenotype by use of freeze-fracture electron microscopy and immunohistochemical techniques. Junctional plaques are similar in structure to those observed in cardiac muscle, their size and number increasing with time in culture. The increased numbers of gap junctions between synthetic phenotype smooth muscle cells may be important during vessel development, following injury, or in atherosclerotic plaque formation.  相似文献   
4.
Glioblastoma (GBM) is the most common form of brain cancer. Even with aggressive treatment, tumor recurrence is almost universal and patient prognosis is poor because many GBM cell subpopulations, especially the mesenchymal and glioma stem cell populations, are resistant to temozolomide (TMZ), the most commonly used chemotherapeutic in GBM. For this reason, there is an urgent need for the development of new therapies that can more effectively treat GBM. Several recent studies have indicated that high expression of connexin 43 (Cx43) in GBM is associated with poor patient outcomes. It has been hypothesized that inhibition of the Cx43 hemichannels could prevent TMZ efflux and sensitize otherwise resistance cells to the treatment. In this study, we use a three-dimensional organoid model of GBM to demonstrate that combinatorial treatment with TMZ and αCT1, a Cx43 mimetic peptide, significantly improves treatment efficacy in certain populations of GBM. Confocal imaging was used to visualize changes in Cx43 expression in response to combinatorial treatment. These results indicate that Cx43 inhibition should be pursued further as an improved treatment for GBM.  相似文献   
5.
The rapid effects of cAMP on gap junction-mediated intercellular communication were examined in several cell types which express different levels of the gap junction protein, connexin43 (Cx43), including immortalized rat hepatocyte and granulosa cells, bovine coronary venular endothelial cells, primary rat myometrial and equine uterine epithelial cells. Functional analysis of changes in junctional communication induced by 8-bromo-cAMP was monitored by a fluorescence recovery after photobleaching assay in subconfluent cultures in the presence or absence of 1.0 mm 1-octanol (an agent which uncouples cells by closing gap junction channels). Communicating cells treated with 1.0 mm 8-bromo-cAMP alone exhibited significant increases in the percent of fluorescence recovery which were detected within 1–3 min depending on cell type, and junctional communication remained significantly elevated for up to 24 hr. Addition of 1.0 mm 8-bromo-cAMP to cultured cells, which were uncoupled with 1.0 mm octanol for 1 min, exhibited partial restoration of gap junctional permeability beginning within 3–5 min. Identical treatments were performed on cultures that were subsequently processed for indirect immunofluorescence to monitor Cx43 distribution. The changes in junctional permeability of cells correlated with changes in the distribution of immunoreactive Cx43. Cells treated for 2 hr with 10 m monensin exhibited a reduced communication rate which was accompanied by increased vesicular cytoplasmic Cx43 staining and reduced punctate surface staining of junctional plaques. Addition of 1.0 mm 8-bromo-cAMP to these cultures had no effect on the rate of communication or the distribution of Cx43 compared to cultures treated with monensin alone. These data suggest that an effect of cyclic AMP on Cx43 gap junctions is to promote increases in gap junctional permeability by increasing trafficking and/or assembly of Cx43 to plasma membrane gap junctional plaques.We acknowledge the technical assistance of Richard Lewis and Meghan Abella. We thank Dr. Hugh Dookwah for contributions to the myometrial cell isolation protocol and Drs. Stephen H. Safe, Timothy D. Phillips, and Evelyn Tiffany-Castiglioni for helpful discussions. This work was funded by NIH (HD-26182, P42-ES04917, ES05871-01A1), the March of Dimes Birth Defects Foundation Basic Research grant #1-0796, and USDA 92-37203-7952.  相似文献   
6.
Control of cell proliferation is vital for the normal development of the neural retina. Gap junctional communication has been implicated in the control of retinal cell proliferation. We have previously shown that the expression of the gap junction protein Connexin 43 closely correlates with the first wave of cell proliferation in the retina. Preventing its expression using antisense oligonucleotides in the developing eye and surrounding tissues, produces a reduction in cell number and the formation of a small eye. In order to examine this in more detail we have developed a new means of manipulating connexin expression in the developing chick embryo. We have generated pIRES vectors which use cyclomegalovirus (CMV) to promote the expression of a green fluorescent protein (EGFP) and either wild type Cx43 or a dominant negative form of this connexin. Following injection of these constructs into the ventricles of the stage 10-11 chick embryo they can be incorporated into one side of the chick brain or optic vesicle using an electroporation technique, leaving the other side as a control. EGFP expression can be seen on the electroporated side of the chick brain within 24hours. Expression of the dominant negative construct in cultures of chick limb bud mesenchyme results in total block of cascade blue transfer when injected into transfected cells. Expression of both wild type and dominant negative constructs in the developing chick retina perturbs the normal development of the eye.  相似文献   
7.
目的:探讨压力-应激对大鼠心肌细胞间隙连接蛋白-43(Cx43)蛋白表达及心肌纤维化的影响。方法:将20只雄性SD大鼠随机分为正常对照组(n=10)和模型组(n=10),对照组正常饲养,模型组给予不可预测性复合应激结合孤养建立压力-应激大鼠模型。监测两组大鼠的体重变化,并通过组织形态学方法,探讨压力-应激对大鼠心肌细胞Cx43蛋白表达及心肌纤维化的影响。结果:在为期42天的造模过程中,从应激第7天开始,模型组大鼠体重明显低于对照组,差异有统计学意义(P<0.001)。且模型组体重增长缓慢,体重增长百分比明显低于对照组,差异有统计学意义(P<0.001)。与对照组相比,模型组大鼠组织HE染色可见心肌细胞排列紊乱,横纹消失,细胞间隙增大,部分肌纤维断裂、溶解,Masson染色可见心肌间质纤维化,胶原纤维增生、排列紊乱。心肌细胞免疫组化染色可见模型组Cx43蛋白表达明显下降(平均光密度值为0.0110±0.0028),与对照组相比(平均光密度值为0.0268±0.0025),差异具有统计学意义(t=-13.081,P<0.001)。结论:过度疲劳导致猝死的发生可能与Cx43蛋白表达水平的下降引起的恶性心律失常有关。  相似文献   
8.
Cell-to-cell communication mediated by gap junctions made of Connexin36 (Cx36) contributes to pancreatic β-cell function. We have recently demonstrated that Cx36 also supports β-cell survival by a still unclear mechanism. Using specific Cx36 siRNAs or adenoviral vectors, we now show that Cx36 downregulation promotes apoptosis in INS-1E cells exposed to the pro-inflammatory cytokines (IL-1β, TNF-α and IFN-γ) involved at the onset of type 1 diabetes, whereas Cx36 overexpression protects against this effect. Cx36 overexpression also protects INS-1E cells against endoplasmic reticulum (ER) stress-mediated apoptosis, and alleviates the cytokine-induced production of reactive oxygen species, the depletion of the ER Ca2+ stores, the CHOP overexpression and the degradation of the anti-apoptotic protein Bcl-2 and Mcl-1. We further show that cytokines activate the AMP-dependent protein kinase (AMPK) in a NO-dependent and ER-stress-dependent manner and that AMPK inhibits Cx36 expression. Altogether, the data suggest that Cx36 is involved in Ca2+ homeostasis within the ER and that Cx36 expression is downregulated following ER stress and subsequent AMPK activation. As a result, cytokine-induced Cx36 downregulation elicits a positive feedback loop that amplifies ER stress and AMPK activation, leading to further Cx36 downregulation. The data reveal that Cx36 plays a central role in the oxidative stress and ER stress induced by cytokines and the subsequent regulation of AMPK activity, which in turn controls Cx36 expression and mitochondria-dependent apoptosis of insulin-producing cells.  相似文献   
9.
The pattern of gap junctional coupling between cells is thought to be important for the proper function of many types of tissues. At present, little is known about the molecular mechanisms that control the size and distribution of gap junctions. We addressed this issue by expressing connexin43 (Cx43) constructs in HeLa cells, a connexin-deficient cell line. HeLa cells expressing exogenously introduced wild-type Cx43 formed small, punctate gap junctions. By contrast, cells expressing Cx43-GFP formed large, sheet-like gap junctions. These results suggest that the GFP tag, which is fused to the carboxyl terminus of Cx43, alters gap junction size by masking the carboxyl terminal amino acids of Cx43 that comprise a zonula occludins-1 (ZO-1) binding site. We are currently testing this hypothesis using deletion and dominant-negative constructs that directly target the interaction between Cx43 and ZO-1.  相似文献   
10.
Abstract

With each heartbeat, billions of cardiomyocytes work in concert to propagate the electrical excitation needed to effectively circulate blood. Regulated expression and timely delivery of connexin proteins to form gap junctions at the specialized cell–cell contact region, known as the intercalated disc, is essential to ventricular cardiomyocyte coupling. We focus this review on several regulatory mechanisms that have been recently found to govern the lifecycle of connexin 43 (Cx43), the short-lived and most abundantly expressed connexin in cardiac ventricular muscle. The Cx43 lifecycle begins with gene expression, followed by oligomerization into hexameric channels, and then cytoskeletal-based transport toward the disc region. Once delivered, hemichannels interact with resident disc proteins and are organized to effect intercellular coupling. We highlight recent studies exploring regulation of Cx43 localization to the intercalated disc, with emphasis on alternatively translated Cx43 isoforms and cytoskeletal transport machinery that together regulate Cx43 gap junction coupling between cardiomyocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号