首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
  国内免费   1篇
  2021年   2篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
排序方式: 共有10条查询结果,搜索用时 62 毫秒
1
1.
氯虫苯甲酰胺对黑肩绿盲蝽实验种群的影响   总被引:1,自引:0,他引:1  
杨洪  王召  金道超 《生态学报》2012,32(16):5184-5190
采取稻茎浸渍法测定了氯虫苯甲酰胺对黑肩绿盲蝽毒力,利用生命表技术研究了氯虫苯甲酰胺对黑肩绿盲蝽实验种群的影响,为协调水稻害虫的化学防治和生物防治提供参考。结果表明,氯虫苯甲酰胺对黑肩绿盲蝽若虫LC50和LC10分别为83.5mg/L和61.3 mg/L,氯虫苯甲酰胺对黑肩绿盲蝽成虫LC50和LC10分别为64.3 mg/L和39.0 mg/L。氯虫苯甲酰胺对黑肩绿盲蝽若虫和成虫的LC10分别大于和接近于大田使用剂量40mg/L。以大田使用剂量40 mg/L氯虫苯甲酰胺稻茎浸渍法处理黑肩绿盲蝽3龄若虫后,其产卵期、寿命和产卵量降低了4.3 d、3.0 d和22.0粒,与对照相比差异显著,表明氯虫苯甲酰胺对当代成虫寿命与生殖力影响较大;药剂处理后次代种群的成虫前期延长了2.3 d;存活率、平均日产卵量跟对照相比明显降低;种群净增值率、周限增长率、内禀增长率跟对照相比明显降低,分别为21.0(对照63.3)、18.8(对照19.2)、0.16(对照0.22),而种群加倍时间延长为4.3(对照3.2);这些结果表明,在40 mg/L浓度下,氯虫苯甲酰胺能够降低黑肩绿盲蝽种群的增长。  相似文献   
2.
Anthranilic diamides, which include the new commercial insecticide, chlorantraniliprole, are an exciting new class of chemistry that target insect ryanodine receptors. These receptors regulate release of stored intracellular calcium and play a critical role in muscle contraction. As with insects, nematodes express ryanodine receptors and are sensitive to the plant alkaloid, ryanodine. However the plant parasitic nematode, Meloidogyne incognita, is insensitive to anthranilic diamides. Expression of a full-length Drosophila melanogaster ryanodine receptor in an insect cell line confers sensitivity to the receptor agents, caffeine and ryanodine along with nanomolar sensitivity to anthranilic diamides. Replacement of a 46 amino acid segment in a highly divergent region of the Drosophila C-terminus with that from Meloidogyne results in a functional RyR which lack sensitivity to diamide insecticides. These findings indicate that this region is critical to diamide sensitivity in insect ryanodine receptors. Furthermore, this region may contribute to our understanding of the differential selectivity diamides exhibit for insect over mammalian ryanodine receptors.  相似文献   
3.
The effects of various concentrations, distance, and application methods of Altriset (Chlorantraniliprole) were investigated against one of the most destructive termites, the eastern subterranean termite, Reticulitermes flavipes Kollar. Three laboratory experiments were conducted. First, we examined the concentration effect of treating the soil contiguously to established foraging tunnels at a fixed 1 m distance. The results demonstrated 100% termite control in 19 d posttreatment at 100 and 50 μg/g and 27% termite mortality at 25 μg/g. Second, we tested the distance effect of the soil treatment (2 and 4 m) on the efficacy of Altriset to the satellite termite populations at a fixed 50 μg/g concentration. This resulted in 100% termite control in 22 d posttreatment at both 2 and 4 m. Third, we examined the effect of differing application methods using 12.5 and 25 μg/g prior to the establishment of foraging tunnels at a fixed 1m distance. This illustrated 100% termite control in 9 d posttreatment at 25 μg/g and 12 d posttreatment at 12.5 μg/g. The third experiment demonstrated soil treatments that were applied prior to termite tunnel establishment had greater efficacy than applications made post tunnel construction. Our results provide a comprehensive understanding about the efficacy of Altriset treatments on eastern subterranean termites.  相似文献   
4.
为明确几种药剂对广东地区草地贪夜蛾Spodoptera frugiperda幼虫的室内毒杀作用及田间防治效果,合理使用化学农药对草地贪夜蛾进行科学防治提供理论依据.本研究采用浸叶法测定了氯虫苯甲酰胺、高效氯氟氰菊酯和甲氨基阿维菌素苯甲酸盐对草地贪夜蛾3龄幼虫的室内毒杀作用;采用茎叶喷雾法,测定了 200克/升氯虫苯甲酰胺悬浮剂、150克/升氯虫苯甲酰胺?高效氯氟氰菊酯微囊悬浮-悬浮剂、25克/升高效氯氟氰菊酯乳油和5%甲氨基阿维菌素苯甲酸盐水分散粒对田间玉米上草地贪夜蛾幼虫的防治效果.室内毒力测定试验结果表明:甲氨基阿维菌素苯甲酸和氯虫苯甲酰胺对草地贪夜蛾3龄幼虫都有较好的毒杀作用,LC50分别为0.037 mg/L和0.094 mg/L;而高效氯氟氰菊酯对草地贪夜蛾的毒杀作用较一般,LC50为5.336 mg/L.田间试验结果表明,供试的3种药剂对草地贪夜蛾幼虫速效性一般,药后1 d的防治效果为40.79%~59.67%;药后3 d的防治效果为67.27%~88.55%;药后7 d其防治效果为55.75%~90.97%.氯虫苯甲酰胺和甲氨基阿维菌素苯甲酸盐对草地贪夜蛾具有较好室内的毒杀作用和田间防治效果,是目前防治草地贪夜蛾的理想药剂;高效氯氟氰菊酯对草地贪夜蛾室内的毒杀作用和田间防治效果较差,不推荐用来防治草地贪夜蛾.  相似文献   
5.
An understudied aspect of insecticides is their stress on non‐targeted pest species. Sublethal insecticidal stress may elicit a range of protective and non‐protective responses that may affect behaviour and sexual fitness of the exposed insects, which may lead to negative, neutral or stimulatory (i.e. hormetic) responses. We assessed the behavioural response of the Neotropical brown stink bug, Euschistus heros, a soybean pest in the Neotropical region with increasing pest status, following exposure to chlorantraniliprole, pyriproxyfen and spinosad, insecticides commonly used against soybean caterpillars and whiteflies. Both individuals, or only the male or female of each mating pair, were exposed. Reproductive behaviour and output were measured to determine insecticide‐ and gender‐mediated fitness. We found that treatment scenario significantly affected mating behaviour, and that the duration of some behaviours were significantly affected. Chlorantraniliprole and pyriproxyfen reduced latency to mate, while spinosad increased this behaviour. Insecticide exposure also decreased the interacting time of each couple and male antennation of the female. Fertility table analyses of exposed couples indicated negligible effect of pyriproxyfen exposure, while spinosad extended generation time and reduced net reproductive rate, leading to lower rates of population growth of the brown stink bug. In contrast, chlorantraniliprole led to only a slight extension on the generation time, but enhanced net reproductive rate of the stink bug leading to higher rates of population growth; no effects on sexual fitness were observed, as both compounds exhibited similar effect on females and males. Latency to mate correlated significantly with the population growth rate. The positive response to chlorantraniliprole exposure reinforces the notion that sublethal exposure of the brown stink bug to this insecticide may lead to stimulatory (hormetic) response favouring its outbreaks in soybean fields.  相似文献   
6.
The lepidopteran pests such as diamondback moth are the regularly harmful pests of crops in the world, which brings enormous losses in crop production. Chlorantraniliprole is an anthranilic diamide insecticide registered for the control of lepidopteran pests with high insecticidal activity, however with uncertain binding site action target of chlorantraniliprole on ryanodine receptor, a series of new chlorantraniliprole derivatives were synthesized and the insecticidal activities of these compounds against diamondback moth were evaluated with chlorantraniliprole and indoxacarb as control. All compounds except 8h, 8p and 8t exhibited varying degree of activities against diamondback moth. Especially, compounds 8c, 8i, 8k and 8l displayed good insecticidal activities against diamondback moth and the activities are even better than that of indoxacarb during 72 h period. The Ki values of all synthesized compounds were calculated through autodocking program respectively. The relationship between calculation value of molecular docking and results of insecticidal activities indicated that the proposed specific receptor, the membrane-spanning domain protein of diamondback moth ryanodine receptor in our study might have chlorantraniliprole binding sites.  相似文献   
7.
Anthranilic diamides are an exceptionally active class of insect control chemistry that selectively activates insect ryanodine receptors causing mortality from uncontrolled release of calcium ion stores in muscle cells. Work in this area led to the successful commercialization of chlorantraniliprole for control of Lepidoptera and other insect pests at very low application rates. In search of lower log P analogs with improved plant systemic properties, exploration of cyano-substituted anthranilic diamides culminated in the discovery of a second product candidate, cyantraniliprole, having excellent activity against a wide range of pests from multiple insect orders. Here we report on the chemistry, biology and structure–activity trends for a series of cyanoanthranilic diamides from which cyantraniliprole was selected for commercial development.  相似文献   
8.
9.
Anthranilic diamides and flubendiamide belong to a new chemical class of insecticides acting as conformation sensitive activators of the insect ryanodine receptor (RyR). These compounds control a diverse range of different herbivorous insects including diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), a notorious global pest on cruciferous crops, which recently developed resistance due to target-site mutations located in the trans-membrane domain of the Plutella RyR. In the present study we further investigated the genetics and functional implications of a RyR G4946E target-site mutation we recently identified in a Philippine diamondback moth strain (Sudlon). Strain Sudlon is homozygous for the G4946E mutation and has been maintained under laboratory conditions without selection pressure for almost four years, and still exhibit stable resistance ratios of >2000-fold to all commercial diamides. Its F1 progeny resulting from reciprocal crosses with a susceptible strain (BCS-S) revealed no maternal effects and a diamide susceptible phenotype, suggesting an autosomally almost recessive mode of inheritance. Subsequent back-crosses indicate a near monogenic nature of the diamide resistance in strain Sudlon. Radioligand binding studies with Plutella thoracic microsomal membrane preparations provided direct evidence for the dramatic functional implications of the RyR G4946E mutation on both diamide specific binding and its concentration dependent modulation of [3H]ryanodine binding. Computational modelling based on a cryo-EM structure of rabbit RyR1 suggests that Plutella G4946E is located in trans-membrane helix S4 close to S4–S5 linker domain supposed to be involved in the modulation of the voltage sensor, and another recently described mutation, I4790M in helix S2 approx. 13 Å opposite of G4946E. Genotyping by pyrosequencing revealed the presence of the RyR G4946E mutation in larvae collected in 2013/14 in regions of ten different countries where diamide insecticides largely failed to control diamondback moth populations. Thus, our study highlights the global importance of the G4946E RyR target-site mutation, which as a mechanism on its own, confers high-level resistance to diamide insecticides in diamondback moth.  相似文献   
10.
Insect ryanodine receptors (RyR) are the molecular target-site for the recently introduced diamide insecticides. Diamides are particularly active on Lepidoptera pests, including tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae). High levels of diamide resistance were recently described in some European populations of T. absoluta, however, the mechanisms of resistance remained unknown. In this study the molecular basis of diamide resistance was investigated in a diamide resistant strain from Italy (IT-GELA-SD4), and additional resistant field populations collected in Greece, Spain and Brazil. The genetics of resistance was investigated by reciprocally crossing strain IT-GELA-SD4 with a susceptible strain and revealed an autosomal incompletely recessive mode of inheritance. To investigate the possible role of target-site mutations as known from diamondback moth (Plutella xylostella), we sequenced respective domains of the RyR gene of T. absoluta. Genotyping of individuals of IT-GELA-SD4 and field-collected strains showing different levels of diamide resistance revealed the presence of G4903E and I4746M RyR target-site mutations. These amino acid substitutions correspond to those recently described for diamide resistant diamondback moth, i.e. G4946E and I4790M. We also detected two novel mutations, G4903V and I4746T, in some of the resistant T. absoluta strains. Radioligand binding studies with thoracic membrane preparations of the IT-GELA-SD4 strain provided functional evidence that these mutations alter the affinity of the RyR to diamides. In combination with previous work on P. xylostella our study highlights the importance of position G4903 (G4946 in P. xylostella) of the insect RyR in defining sensitivity to diamides. The discovery of diamide resistance mutations in T. absoluta populations of diverse geographic origin has serious implications for the efficacy of diamides under applied conditions. The implementation of appropriate resistance management strategies is strongly advised to delay the further spread of resistance.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号