首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  国内免费   1篇
  完全免费   2篇
  2018年   3篇
  2017年   1篇
  2014年   4篇
  2013年   3篇
  2012年   5篇
  2011年   10篇
  2010年   3篇
  2009年   6篇
  2008年   6篇
  2007年   17篇
  2006年   7篇
  2005年   2篇
  2004年   4篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有100条查询结果,搜索用时 31 毫秒
1.
SR141716A, a potent and selective antagonist of the brain cannabinoid receptor   总被引:30,自引:0,他引:30  
SR141716A is the first selective and orally active antagonist of the brain cannabinoid receptor. This compound displays nanomolar affinity for the central cannabinoid receptor but is not active on the peripheral cannabinoid receptor. In vitro, SR141716A antagonises the inhibitory effects of cannabinoid receptor agonists on both mouse vas deferens contractions and adenylyl cyclase activity in rat brain membranes. After intraperitoneal or oral administration SR141716A antagonises classical pharmacological and behavioural effects of cannabinoid receptor agonists. This compound should prove to be a powerful tool for investigating the in vivo functions of the anandamide/cannabinoid system.  相似文献
2.
The mechanism by which cannabinoid compounds produce their effects in the rat brain was evaluated in this investigation. Cannabinoid receptors, quantitated by [3H]CP-55,940 binding, were found in greatest abundance in the rat cortex, cerebellum, hippocampus, and striatum, with smaller but significant binding also found in the hypothalamus, brainstem, and spinal cord. Using rat brain slice preparations, we evaluated the effect of desacetyllevonantradol on basal and forskolin-stimulated cyclic AMP accumulation in the regions exhibiting the greatest cannabinoid receptor density. Desacetyllevonantradol (10 microM) reduced cyclic AMP levels in the hippocampus, frontal cortex, and striatum. In the cerebellum, however, the response to desacetyllevonantradol was biphasic with cyclic AMP accumulation being decreased at lower and increased at higher concentrations. Desacetyllevonantradol reduced cyclic AMP accumulation in isoproterenol-stimulated slices in the cortex and cerebellum, but not in the hippocampus. Cells that responded to vasoactive intestinal peptide with an increase in cyclic AMP accumulation in the hippocampus and cortex also responded to desacetyllevonantradol. The modulation of cyclic AMP accumulation by desacetyllevonantradol could be attenuated following stereotaxic implantation of pertussis toxin, supporting the involvement of a G protein in the cannabinoid response in the brain. However, other actions of cannabinoid compounds may also affect the cyclic AMP levels in brain slice preparations.  相似文献
3.
Cannabinoid receptors are widely distributed in the nuclei of the extrapyramidal motor and mesolimbic reward systems; their exact functions are, however, not known. The aim of the present study was to characterize the effects of cannabinoids on the electrically evoked release of endogenous dopamine in the corpus striatum and the nucleus accumbens. In rat brain slices dopamine release elicited by single electrical pulses was determined by fast cyclic voltammetry. Dopamine release was markedly inhibited by the OP2 opioid receptor agonist U-50488 and the D2/D3 dopamine receptor agonist quinpirole, indicating that our method is suitable for studying presynaptic modulation of dopamine release. In contrast, the CB1/CB2 cannabinoid receptor agonists WIN55212-2 (10(-6) M) and CP55940 (10(-6)-10(-5) M) and the CB1 cannabinoid receptor antagonist SR141716A (10(-6) M) had no effect on the electrically evoked dopamine release in the corpus striatum and the nucleus accumbens. The lack of a presynaptic effect on terminals of nigrostriatal and mesolimbic dopaminergic neurons is in accord with the anatomical distribution of cannabinoid receptors: The perikarya of these neurons in the substantia nigra and the ventral tegmental area do not synthesize mRNA, and hence protein, for CB1 and CB2 cannabinoid receptors. It is therefore unlikely that presynaptic modulation of dopamine release in the corpus striatum and the nucleus accumbens plays a role in the extrapyramidal motor and rewarding effects of cannabinoids.  相似文献
4.
Abstract: Using the endogenous cannabinoid receptor agonist anandamide, the synthetic agonist CP 55940 {[1α,2β( R )5α]-(−)-5-(1,1-dimethylheptyl)-2-[5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]phenol}, and the specific antagonist SR 141716 [ N -(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1 H -pyrazole-3-carboxamide hydrochloride], second messenger activation of the central cannabinoid receptor (CB1) was examined in rat striatal and cortical slices. The effects of these cannabinoid ligands on electrically evoked dopamine (DA) release from [3H]dopamine-prelabelled striatal slices were also investigated. CP 55940 (1 µ M ) and anandamide (10 µ M ) caused significant reductions in forskolin-stimulated cyclic AMP accumulation in rat striatal slices, which were reversed in the presence of SR 141716 (1 µ M ). CP 55940 (1 µ M ) had no effect on either KCl- or neurotransmitter-stimulated 3H-inositol phosphate accumulation in rat cortical slices. CP 55940 and anandamide caused significant reductions in the release of dopamine after electrical stimulation of [3H]dopamine-prelabelled striatal slices, which were antagonised by SR 141716. SR 141716 alone had no effect on electrically evoked dopamine release from rat striatal slices. These data indicate that the CB1 receptors in rat striatum are negatively linked to adenylyl cyclase and dopamine release. That the CB1 receptor may influence dopamine release in the striatum suggests that cannabinoids play a modulatory role in dopaminergic neuronal pathways.  相似文献
5.
Endocannabinoids are a group of biologically active endogenous lipids that have recently emerged as important mediators in energy balance control. The two best studied endocannabinoids, anandamide (N-arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol (2-AG) are the endogenous ligands of the central and peripheral cannabinoid receptors. Furthermore, AEA binds to the transient receptor potential vanilloid type-1 (TRPV1), a capsaicin-sensitive, non-selective cation channel. The synthesis of these endocannabinoids is catalyzed by the N-acylphosphatidylethanolamine-selective phospholipase D (NAPE-PLD) and the sn-1-selective diacylglycerol lipase (DAGL), whereas their degradation is accomplished by the fatty acid amide hydrolase (FAAH) and the monoglyceride lipase (MGL), respectively. We investigated the presence of a functional endocannabinoid system in human adipose tissue from seven healthy subjects. Subcutaneous abdominal adipose tissue underwent biochemical and molecular biology analyses, aimed at testing the expression of this system and its functional activity. AEA and 2-AG levels were detected and quantified by HPLC. Real time PCR analyzed the expression of the endocannabinoid system and immunofluorescence assays showed the distribution of its components in the adipose tissue. Furthermore, binding assay for the cannabinoid and vanilloid receptors and activity assay for each metabolic enzyme of the endocannabinoid system gave clear evidence of a fully operating system. The data presented herein show for the first time that the human adipose tissue is able to bind AEA and 2-AG and that it is endowed with the biochemical machinery to metabolize endocannabinoids.  相似文献
6.
7.
Cannabinoid signalling   总被引:3,自引:0,他引:3  
After their discovery, the two known cannabinoid receptors, CB(1) and CB(2), have been the focus of research into the cellular signalling mechanisms of cannabinoids. The initial assessment, mainly derived from expression studies, was that cannabinoids, via G(i/o) proteins, negatively modulate cyclic AMP levels, and activate inward rectifying K(+) channels. Recent findings have complicated this assessment on different levels: (1) cannabinoids include a wide range of compounds with varying profiles of affinity and efficacy at the known CB receptors, and these profiles do not necessarily match their biological activity; (2) CB receptors appear to be intrinsically active and possibly coupled to more than one type of G protein; (3) CB receptor signalling mechanisms are diverse and dependent on the system studied; (4) cannabinoids have other targets than CB receptors. The aim of this mini review is to discuss the current literature regarding CB receptor signalling pathways. These include regulation of adenylyl cyclase, MAP kinase, intracellular Ca(2+), and ion channels. In addition, actions of cannabinoids that are not mediated by CB(1) or CB(2) receptors are discussed.  相似文献
8.
Abstract: Two cannabinoid receptors belonging to the superfamily of G protein-coupled membrane receptors have been identified and cloned: the neuronal cannabinoid receptor (CB1) and the peripheral cannabinoid receptor (CB2). They have been shown to couple directly to the Gi/o subclass of G proteins and to mediate inhibition of adenylyl cyclase upon binding of a cannabinoid agonist. In several cases, however, cannabinoids have been reported to stimulate adenylyl cyclase activity, although the mechanism by which they did so was unclear. With the cloning of nine adenylyl cyclase isozymes with various properties, including different sensitivities to αs, αi/o, and βγ subunits, it became important to assess the signaling pattern mediated by each cannabinoid receptor via the different adenylyl cyclase isozymes. In this work, we present the results of cotransfection experiments between the two types of cannabinoid receptors and the nine adenylyl cyclase isoforms. We found that independently of the method used to stimulate specific adenylyl cyclase isozymes (e.g., ionomycin, forskolin, constitutively active αs, thyroid-stimulating hormone receptor activation), activation of the cannabinoid receptors CB1 and CB2 inhibited the activity of adenylyl cyclase types I, V, VI, and VIII, whereas types II, IV, and VII were stimulated by cannabinoid receptor activation. The inhibition of adenylyl cyclase type III by cannabinoids was observed only when forskolin was used as stimulant. The activity of adenylyl cyclase type IX was inhibited only marginally by cannabinoids.  相似文献
9.
To investigate the expression of the endocannabinoid 1 and 2 receptors by human adipocyte cells of omental and subcutaneous fat tissue, as well as to determine whether these receptors are functional. The expression of CB1 and CB2 receptors on human adipocytes was analyzed by western blotting, immunohistology and immunocytology. We also investigated intracytoplasmic cyclic AMP level modulation following CB1 and CB2 receptor stimulation by an enzymatic immuno assay. All mature adipocytes, from visceral (epiploon) and subcutaneous fat tissue, express CB1 and CB2 on their plasma membranes. We also demonstrate in this study that adipocyte precursors (pre-adipocytes) express CB1 and CB2 on their plasma membranes and that both receptors are functional. Activation of CB1 increases intracytoplasmic cyclic AMP whilst CB2 activation leads to a cyclic AMP decrease. Here we demonstrate, for the first time, that adipocytes of human adipose tissue (mature adipocytes and pre-adipocytes) express functional plasma membrane CB1 and CB2 receptors. Their physiological role on the adipose tissue is not known. However, their major involvement in the physiology of other tissues leads us to suppose that they could play a significant role in the homeostasis of the energy balance and/or in the regulation of adipose tissue inflammation.  相似文献
10.
Cell migration is of paramount importance in physiological processes such as immune surveillance, but also in the pathological processes of tumor cell migration and metastasis development. The factors that regulate this tumor cell migration, most prominently neurotransmitters, have thus been the focus of intense investigation. While the majority of neurotransmitters have a stimulatory effect on cell migration, we herein report the inhibitory effect of the endogenous substance anandamide on both tumor cell and lymphocyte migration. Using a collagen-based three-dimensional migration assay and time-lapse videomicroscopy, we have observed that the anandamide-mediated signals for CD8+ T lymphocytes and SW 480 colon carcinoma cells are each mediated by distinct cannabinoid receptors (CB-Rs). Using the specific agonist docosatetraenoylethanolamide (DEA), we have observed that the norepinephrine-induced migration of colon carcinoma cells is inhibited by the CB1-R. The SDF-1–induced migration of CD8+ T lymphocytes was, however, inhibited via the CB2-R, as shown by using the specific agonist JWH 133. Therefore, specific inhibition of tumor cell migration via CB1-R engagement might be a selective tool to prevent metastasis formation without depreciatory effects on the immune system of cancer patients.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号