首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   2篇
  国内免费   4篇
  2020年   1篇
  2019年   1篇
  2013年   2篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
干热河谷主要造林树种气体交换特性的坡位效应   总被引:3,自引:0,他引:3  
植物光合与水分生理特征是植物逆境适应能力评价的重要参考指标.极端生境下,坡位的选择有时成为造林成败的关键.探讨了元谋金沙江干热河谷9个主要造林树种光合与蒸腾作用在不同坡位间的空间差异及干热季向湿润季转换的时序差异.结果表明,低的坡位有助于树种维持相对高的净光合速率,且树种不同,由坡位引起的光合增益效应亦具有较大差别;低坡位的光合增益效应在干热季更为明显,而在湿润季,干热胁迫解除,低坡位的光合增益效应具有较大程度的降低;在不同坡位间发生的光合限制主要受非气孔因素主导.无论在干热季或湿润季,与净光合速率的变化情形一致,低的坡位均促进了树种的蒸腾速率.水分利用效率受坡位的影响较为复杂,因树种、季节而异.  相似文献   
2.
3.
干热河谷主要植被恢复树种蒸腾作用   总被引:5,自引:0,他引:5  
以金沙江干热河谷区10多种自然生长树种为试材,探讨了不同季节典型晴天里各树种叶片水平的蒸腾速率日动态规律,以揭示极端干热生境条件下供试树种蒸腾作用的动态特征.实验结果表明:在干旱生境(3月份)转向干热生境(5月份)时,大多数供试树种蒸腾速率的日变化峰值有所提前,蒸腾作用受到明显限制,而当干热胁迫解除、湿润生境(10月份)来临时,蒸腾作用受限程度减轻或消失,多数供试树种呈现出比较典型的峰状曲线;在干旱、干热以及湿润季节里,供试树种均可分为高、亚高、亚低和低蒸腾速率树种等4个类别,且随着季节的变化,树种所属类别或蒸腾速率大小排序存在明显变动,体现了树种特性在水分生理反应上的多样性表达;随着干热胁迫的加深,供试树种蒸腾速率的变化可分为增强型、减弱型及稳定型3种;树种蒸腾速率的变化方向与气孔导度的变化方向存在不一致的现象,树种蒸腾速率的季节性增减可能表现为气孔因素为主与非气孔因素为主两种控制形式.  相似文献   
4.
自疏边界线是指植物种群发生密度依赖死亡时种群最大收获量的上边界线。已有研究由于在拟合自疏边界线的过程中对数据点的选择和参数估计的方法存在诸多的差异,进而导致产生对自疏法则的争议。该研究采用26年生杉木(Cunninghamia lanceolata)人工林的定位观测数据,对视觉法、死亡率法、等距区间法和相对密度法等4种数据点选择方法以及最小二乘法、降维分析法、分位数回归法和随机边界方程等4种参数拟合方法进行对比分析,以探寻客观选择自疏拟合数据和正确拟合方法的途径。比较4种不同的数据选择方法得出:视觉法具有较强的主观性;对于没有发生非密度依赖死亡的林分,死亡率法可以准确地确定林分自疏的起始点;等距区间法可以减少非密度依赖死亡的影响,得到的数据点能充分反映林分的自疏过程;相对密度法可以保证临界密度阈值以上的数据点拟合林分自疏边界线的有效性,并能排除非密度依赖死亡的影响。比较分析4种不同的拟合方法发现:最小二乘法和降维分析法拟合的林分自疏边界线均从实测数据"中心"穿过,与林分自疏边界线为林分收获量上边界线的涵义不相符合,无法真实反映林分的自疏进程;分位数回归和随机边界方程的拟合结果均与实测数据一致,能够较为准确地反映林分自疏的真实过程,但二者的统计推断要求都比较严格。分位数值的正确选取和残差足够小且趋于0,是分位数回归法和随机边界方程能否正确反映林分自疏动态的前提。  相似文献   
5.
以引进的蒙古大果沙棘乌兰格木为母本,中国沙棘为父本,于1995年开展了杂交选育研究,共选育出45个优良单株。入选的优良杂种单株大部分的树高、地径、冠幅均显著高于母本乌兰格木,但低于父本中国沙棘。杂种2年生枝棘刺数为0~6个,界于父母本之间。优良杂种单株果实百果质量为20.10~63.17g,其中8个单株出现超亲现象,其余均明显小于母本,但较中国沙棘提高0~206.75%。综合评价结果表明,所选优良杂种单株生态适应性、经济价值分别明显高于母本引进品种、父本中国沙棘,生态经济价值十分优良。  相似文献   
6.
最大密度法则研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
 该文从理论推导和研究方法等方面对近几十年来关于最大密度法则的研究进展进行了综述,得出结论:1)关于最大密度法则理论主要有几何关系的3/2法则和空间填充分行支状网运输结构的WBE模型。进一步研究发现它们都是建立在一种静态的统计分析基础之上的,因而近几年研究者们开始尝试用动态的个体植物之间的竞争来建立模型。尽管如此,关于最大密度法则的模型仍然没有逃出固有的模式,如用平均植物大小代替整个植物种群。因此,关于最大密度法则理论需要进一步的研究。2)最大密度法则理论在假设条件、数学推导、 用于估计参数的原始数据选择等方面存在争议。任何模型的建立都是基于一些特定的条件和假设建立的,因而得到的关系并不是一个万能的定律。所以在分析数据时,这些模型可结合使用。3)在研究方法上,由于大家对最大密度法则的理解不同,标准不同,造成研究方法多种多样。因而建议在以后的研究中建立一个客观统一的方法。  相似文献   
7.
采用人工气候室控制环境条件,研究了高温(30℃和40℃)对印楝(Azadirachta indica A.Juss.)、木豆[Cajanus cajan(Linn.)Huth]、赤桉(Eucalyptus camaldulensis Dehn.)、蓝桉(E.globulus Labillardiere)、柠檬桉(E.citriodoraHook.)、大叶相思(Acacia auriculiformis A.Cunn.)和麻风树(Jatropha curcas Linn.)7个干热河谷植被恢复树种幼苗叶片光合参数的影响,以及低湿条件对麻风树幼苗叶片光合参数的影响,并对高温及低湿条件下各树种叶片光合参数与叶片含水量的关系进行了探讨。结果表明:在高温条件下,供试树种叶片的净光合速率(Pn)和Fv/Fm值均随叶片含水量的提高逐渐增加,但在40℃条件下各树种的Pn以及刚nn值均明显降低,表明叶片含水量高有利于各树种叶片Pn和n/Fm的提高,而40℃高温则对其Pn和Fv/Frn有明显抑制作用。在非干旱条件下,高温对各树种幼苗的Pn、气孔导度(Gs)、胞间c0:浓度(ci)和蒸腾速率(Tr)均有不同程度影响。在40℃条件下,供试树种中印楝和赤桉幼苗的Pn降幅最小;大叶相思、蓝桉和木豆幼苗的Gs明显增加;各树种幼苗的ci均明显提高;除印楝外,其他6个树种幼苗的Tr明显加剧且叶片水分利用效率降低。在叶片含水量较高的状况下,供试7个树种中印楝和赤桉幼苗的FV/Fm值受高温的影响较小。在空气相对湿度20%的条件下,麻风树幼苗的Pn、Cs、ci及Tr均明显降低,且均随叶片含水量的提高而增加,表明叶片含水量下降是麻风树幼苗光合作用减弱的重要影响因素。研究结果表明:干热河谷地区的高温引起的植物光合限制以非气孔因素为主导;在供试的7个树种中,印楝和赤桉对干热河谷高温干旱生境的适应或忍耐能力较强。  相似文献   
8.
广西大青山杉木人工林碳氮磷生态化学计量特征   总被引:8,自引:5,他引:3  
为研究杉木人工林生态系统植物、凋落物和土壤碳(C)、氮(N)、磷(P)生态化学计量特征的差异和相互关系,以广西大青山杉木密度试验林为研究对象,测定了5种初植密度下杉木人工林针叶、草本、凋落物和土壤的C、N、P含量及其比值。结果表明:针叶的C、N、P含量最高,凋落物次之,土壤最低。C∶N、C∶P表现为凋落物针叶草本土壤,N∶P表现为凋落物草本针叶土壤。其中针叶的N∶P均值为16.69,凋落物C∶N显著高于N发生释放的C∶N的临界值(30)。杉木人工林针叶和草本N、C∶N呈显著负相关关系,针叶和土壤的C∶N、N∶P,草本和凋落物P含量、C∶P均呈显著正相关关系,体现了杉木生态系统内的C、N、P在针叶、草本、凋落物和土壤之间相互转化和循环。南亚热带杉木人工林植物生长受P限制,凋落物分解慢,土壤有机质的矿化作用慢,养分循环能力低,因此在人工林抚育管理中,应保护林下植被,适当施肥,提高土壤肥力,维持杉木林长期生产力。  相似文献   
9.
杉木人工林生物量估算模型的选择   总被引:7,自引:0,他引:7  
采用11种形式的生物量模型,分别对杉木幼龄林(7年生)、中龄林(16年生)、成熟林(28年生)和不分林龄的单木各器官和全株生物量进行拟合,共得到生物量估算模型308个.结果表明: 11种生物量模型均能较好地模拟杉木单木生物量,其中幂函数模型的拟合效果最优,其次为指数模型,然后为多项式模型;共选出估算杉木幼龄林、中龄林和成熟林各器官和全株生物量的最优模型21个(包括18个器官模型、3个全株模型),不分林龄的杉木单木各生物量的最优模型7个(包括6个器官模型、1个全株模型),均为幂函数模型;不同林龄的杉木单木生物量最优模型的通用性较差,而不分龄林的杉木单木生物量最优模型具有一定的通用性,精度较高,可用于估算不同林龄的杉木单木生物量.应用福建邵武杉木单木生物量模型对江西28年生的杉木成熟林单木各生物量的预测结果显示,不分林龄的大样本生物量模型精度较高,可在较大范围内应用,而区域小样本模型仅限于在区域小范围内应用.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号