首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1234篇
  免费   35篇
  国内免费   37篇
  2023年   8篇
  2022年   7篇
  2021年   18篇
  2020年   20篇
  2019年   14篇
  2018年   21篇
  2017年   10篇
  2016年   9篇
  2015年   18篇
  2014年   19篇
  2013年   53篇
  2012年   20篇
  2011年   18篇
  2010年   14篇
  2009年   30篇
  2008年   27篇
  2007年   33篇
  2006年   37篇
  2005年   43篇
  2004年   51篇
  2003年   55篇
  2002年   47篇
  2001年   47篇
  2000年   40篇
  1999年   33篇
  1998年   34篇
  1997年   45篇
  1996年   41篇
  1995年   32篇
  1994年   44篇
  1993年   53篇
  1992年   42篇
  1991年   35篇
  1990年   21篇
  1989年   19篇
  1988年   35篇
  1987年   28篇
  1986年   23篇
  1985年   20篇
  1984年   15篇
  1983年   11篇
  1982年   17篇
  1981年   17篇
  1980年   12篇
  1978年   8篇
  1977年   10篇
  1976年   11篇
  1975年   9篇
  1974年   10篇
  1973年   13篇
排序方式: 共有1306条查询结果,搜索用时 15 毫秒
991.
992.
A two-component high-affinity nitrate uptake system in barley   总被引:14,自引:0,他引:14  
The analysis of genome databases for many different plants has identified a group of genes that are related to one part of a two-component nitrate transport system found in algae. Earlier work using mutants and heterologous expression has shown that a high-affinity nitrate transport system from the unicellular green algae, Chlamydomonas reinhardtii required two gene products for function. One gene encoded a typical carrier-type structure with 12 putative trans-membrane (TM) domains and the other gene, nar2 encoded a much smaller protein that had only one TM domain. As both gene families occur in plants we investigated whether this transport model has more general relevance among plants. The screening for nitrate transporter activity was greatly helped by a novel assay using (15)N-enriched nitrate uptake into Xenopus oocytes expressing the proteins. This assay enables many oocytes to be rapidly screened for nitrate transport activity. The functional activity of a barley nitrate transporter, HvNRT2.1, in oocytes required co-injection of a second mRNA. Although three very closely related nar2-like genes were cloned from barley, only one of these was able to give functional nitrate transport when co-injected into oocytes. The nitrate transport performed by this two-gene system was inhibited at more acidic external pH and by acidification of the cytoplasm. This specific requirement for two-gene products to give nitrate transport function has important implications for attempts to genetically manipulate this fundamental process in plants.  相似文献   
993.
994.
Two large-scale ethylmethanesulfonate (EMS) mutant populations from barley (Hordeum vulgare L.) cv. Optic have been developed to promote both forward and reverse genetics in this crop. Leaf material and seed from approximately 20 000 M(2) plants were individually harvested, freeze-dried and archived. DNA was isolated from 9216 plants from the 20 and 30 mm EMS treatments and assembled into 1152 eight-plant pools. To facilitate PCR-based mutation scanning an approach has been employed that combines cleavage of heteroduplexes using the Cel nuclease (Cel I), post-cleavage intercalating dye labeling and the subsequent detection of cleaved products on a Transgenomic WAVE-HS. The populations were evaluated by screening for induced mutations in two genes of interest and the induced mutations were validated by sequence analysis. To enhance the screening process, 12-16 M(3) progeny from each of the M(2) plants were assessed for visible phenotypes and the data entered into a web accessible database (http://bioinf.scri.sari.ac.uk/distilling/distilling.html).  相似文献   
995.
996.
997.
The least ambiguous genetic markers are those based on completely characterized DNA sequence polymorphisms. Unfortunately, assaying allele states by allele sequencing is slow and cumbersome. The most desirable type of genetic marker would be unambiguous, inexpensive to assay and would be assayable singly or in parallel with hundreds of other markers (multiplexable). In this report we sequenced alleles at 54 barley (Hordeum vulgare ssp. vulgare) loci, 38 of which contained single-nucleotide polymorphisms (SNPs). Many of these 38 loci contained multiple polymorphisms, and a total of 112 polymorphisms were scored in five barley genotypes. The polymorphism data set was analyzed both by using the individual mutations as cladistic characters and by reducing data for each locus to haplotypes. We compared the informativeness of these two approaches by consensus tree construction and bootstrap analysis. Both approaches provided similar results. Since some of the loci sequenced contained insertion/deletion events and multiple point mutations, we thought that these multiple-mutated loci might represent old alleles that predated the divergence of barley from H. spontaneum. We evaluated sequences from a sample of H. spontaneum accessions from the Eastern Mediterranean, and observed similar alleles present in both cultivated barley and H. spontaneum, suggesting either multiple domestication events or multiple transfers of genes between barley and its wild ancestor.  相似文献   
998.
Drought, low temperature and salinity are the most important abiotic stress factors limiting crop productivity. A genomic map of major loci and QTLs affecting stress tolerance in Triticeae identified the crucial role of the group 5 chromosomes, where the highest concentration of QTLs and major loci controlling plant's adaptation to the environment (heading date, frost and salt tolerance) has been found. In addition, a conserved region with a major role in drought tolerance has been localized to the group 7 chromosomes. Extensive molecular biological studies have led to the cloning of many stress-related genes and responsive elements. The expression of some stress-related genes was shown to be linked to stress-tolerant QTLs, suggesting that these genes may represent the molecular basis of stress tolerance. The development of suitable genetic tools will allow the role of stress-related sequences and their relationship with stress-tolerant loci to be established in the near future.  相似文献   
999.
Hristova  V.A.  Popova  L.P. 《Photosynthetica》2002,40(4):567-574
Twelve-day-old barley seedlings were supplied with 23 M methyl jasmonate (MeJA) or 10 M paraquat (Pq) via the transpiration stream and kept in the dark for 24 h. Then they were exposed to 100 mol m–2 s–1 PAR and samples were taken 1, 2, 3, and 6 h after irradiation. Treatment of seedlings with MeJA alone resulted in decreased content of chlorophyll (Chl), and net photosynthetic (P N) and transpiration rates. Pq treatment led to a decrease in Chl content and to a very strong inhibition of P N, the effects were manifested by 1 h of irradiation. Pq treatment did not affect the activity of ribulose-1,5 bisphosphate carboxylase (RuBPC, EC 4.1.1.39) but increased the activity of the photorespiratory enzymes phosphoglycolate phosphatase (PGP, EC 3.1.3.18), glycolate oxidase (GO, EC 1.1.3.1), and catalase (EC 1.11.1.6). Pre-treatment of seedlings with MeJA before exposure to Pq fully blocked the inhibitory effect of Pq on photosynthesis and protected against subsequent Pq-induced oxidative damage.  相似文献   
1000.
Excised barley embryos cultured on a nutrient medium containing methionine-[CD3] incorporated deuterium into the newly biosynthesized sterols. Two deuterium atoms were present in 24-methylenecycloartanol, 24-methylenelophenol and campesterol and a maximum of four deuterium atoms were incorporated into 24-ethylidenelophenol, stigmasterol and sitosterol. Mevalonic acid-[2-14C(4R)4-3H1] was utilized by the barley embryos to give 28-isofucosterol with a 3H-14C atomic ratio of 3:5 and stigmasterol and sitosterol with a 3H-14C atomic ratio of 2:5. 24-Methylenelophenol and 24-ethylidenelophenol were isolated from barley seed and 24-ethylidenelophenol-[2,4-3H3] was incorporated into sitosterol by barley seedlings. These results show that in the production of sitosterol a 24-ethylidenesterol intermediate is produced and it is suggested that this is isomerized to give a Δ24,(25) sterol prior to reduction to the saturated C29 sterol side chain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号