首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2338篇
  免费   70篇
  国内免费   147篇
  2023年   10篇
  2022年   15篇
  2021年   19篇
  2020年   46篇
  2019年   30篇
  2018年   24篇
  2017年   52篇
  2016年   36篇
  2015年   36篇
  2014年   69篇
  2013年   114篇
  2012年   52篇
  2011年   98篇
  2010年   68篇
  2009年   130篇
  2008年   179篇
  2007年   159篇
  2006年   118篇
  2005年   114篇
  2004年   94篇
  2003年   69篇
  2002年   61篇
  2001年   37篇
  2000年   60篇
  1999年   60篇
  1998年   49篇
  1997年   45篇
  1996年   47篇
  1995年   41篇
  1994年   30篇
  1993年   35篇
  1992年   40篇
  1991年   40篇
  1990年   47篇
  1989年   41篇
  1988年   36篇
  1987年   26篇
  1986年   22篇
  1985年   28篇
  1984年   29篇
  1983年   35篇
  1982年   46篇
  1981年   33篇
  1980年   40篇
  1979年   32篇
  1978年   18篇
  1977年   16篇
  1976年   14篇
  1974年   4篇
  1970年   3篇
排序方式: 共有2555条查询结果,搜索用时 31 毫秒
991.
Recent data show that the Earth climate is undergoing a change at a rate which is outstanding in geologic history. Temperature is one of the major driving forces of gene flow and dispersal. In this paper the spatial dynamics of genetic dispersal is studied under the auspices of temperature increase by means of a mathematical model. The main elements genetics, competition and dispersal are combined in a coherent approach by a system of coupled partial differential equations with non-linear reaction terms describing population dynamics, genetic exchange and competition. Temperature reaction norms are conferred by a two allele system. The non-linearities of the interaction terms give rise to a richness of spatio-temporal dynamic patterns. Here we show how invasion processes in form of travelling waves are initiated by a temperature rise.  相似文献   
992.
The archaeal community present in a sample of Mixed Thermophilic Culture-B (MTC-B) from a laboratory-scale thermophilic bioleaching reactor was investigated by temperature gradient gel electrophoresis (TGGE) and fluorescence in situ hybridisation (FISH). Both techniques were specifically adapted for use on native state bioleaching samples, with a view to establishing convenient means for monitoring culture composition. Using the TGGE protocol developed, the relative species composition of the thermophilic bioleaching sample was analysed, and included four phylotypes belonging to the Sulfolobales, which were related to Stygiolobus azoricus, Metallosphaera sp. J1, Acidianus infernus and Sulfurisphaera ohwakuensis. However, the St. azoricus-like phylotype was difficult to resolve and some micro-heterogeneity was observed within this phylotype. Specific FISH probes were designed to qualitatively assess the presence of the phylotypes in MTC-B. The sample was dominated by Sf. ohwakuensis-like Archaea. In addition, the St. azoricus-like, Metallosphaera species-like and Acidianus species-like cells appeared in similar low abundance in the community. Most strikingly, FISH identified Sulfolobus shibatae-like cells present in low numbers in the sample even though these were not detected by PCR-dependent TGGE. These results highlight the importance of using more than one molecular technique when investigating the archaeal diversity of complex bioleaching reactor samples.  相似文献   
993.
Biochemical parameters of the angiotensin converting enzyme-like activity (ACELA) in the gills of two Antarctic teleosts, Chionodraco hamatus and Trematomus bernacchii were characterized. Enzymatic activity was revealed following hydrolysis of a specific substrate of angiotensin-converting enzyme N-[3-(2-furyl)acryloyl]l-phenylalanyl-glycyl-glycine (FAPGG) and metabolites were separated by reverse phase HPLC analysis. The results showed similar Km values for the substrate FAPGG at 5°C for the two species with an increase of Km value for T. bernacchii at 25°C. The optimum pH value was 8.5 at 25°C and optimum chloride concentrations were about 300 mM. In T. bernacchii the optimum temperature for maximum enzyme activity was 50°C, while maximum activity in C. hamatus occurred at 35°C. Lisinopril was more efficient in inhibiting ACELA in C. hamatus with an I 50 value of 16.83 ± 5.11 nM, compared to an I 50 value of 30.66 ± 5.19 nM in T. bernacchii. In conclusion, it appears that some biochemical parameters of ACELA in C. hamatus differ from those in T. bernacchii, probably due to different ways that the enzyme adapts to the constantly cold temperatures of the animal’s environment.  相似文献   
994.
This study investigates the physiological responses in the hermatypic coral Galaxea fascicularis exposed to salinity stress (from 37 ppt to 15 ppt) for 12 h, combined effects of reduced salinity (from 37 ppt to 20 ppt) and two temperatures (26 °C and 32 °C) for 12 h and combined effects of reduced salinity (from 37 ppt to 25 ppt) and two temperatures (26 °C and 29.5 °C) for 10 d. The results demonstrate that the coral is tolerant to 12 h exposure to extremely low salinity (15 ppt). The study also shows that combined effects of temperature and low salinity aggravate the damage on the photosynthesis of the symbiotic dinoflagellates in 12 h exposure to 20 ppt sea water. This study suggests that high temperature (29.5 °C) aggravates the damage of trivially low salinity (30 ppt) on the holobiont (the coral and its symbiotic dinoflagellates) in 10 d exposure. However, high temperature (29.5 °C) may have an antagonistic effect between temperature and low salinity (25 ppt) on metabolism of the holobiont. Based on the above results, we suggest that (1) the true mechanism of corals exposed to combined effects of low salinity and high temperature is complicated. This calls for more studies on different corals. Future studies should aim at investigating long-term low-level stress in order to simulate in situ conditions more accurately; (2) when corals exposed to extremely severe combined stressors for short-term or trivially severe stressors for relative long-term, the combined effects of two stressors (such as low salinity and high temperature) may be negative, otherwise, the effects may be additive.  相似文献   
995.
To clarify the factors affecting fungal contamination in bathrooms, the growth of 13 common fungal species (13 isolates) in bathrooms was studied under various environmental conditions. Most of the fungi examined grew on media of 0.01% and 0.05% sodium fatty acid and on media of 0.01% anion surfactant. On media of non-ion surfactant, however, growth varied from species to species. Fungi found commonly in bathrooms can be divided into two groups. The first group, including six species — Cladophialophora boppii, Exophiala spinifera, E. salmonis, Phialophora europaea, Phoma herbarum, and Scolecobasidium constrictum — grew on media of 0.01%, 0.05%, and 0.25% non-ion surfactant, with the latter five species also growing on alkali medium. Most of them did not grow at 33°C, or on media with 10% NaCl, however. Fungi of these six species, identified using DNA and morphological analysis, were common in bathrooms, but not in other indoor environments, for example, in house dust or on windows. The second group contained seven species including Aureobasidium sp., Cladosporium cladosporioides, and Fusarium sp., which were common both in house dust and in bathrooms; they did not grow on media of 0.05% or 0.25% non-ion surfactant, but most grew comparatively fast on normal medium (1/4 PDA), and were able to grow on media with 10% NaCl and also at 33°C. The characteristic fungi found in bathrooms were able to exploit surfactant but were unable to grow well under comparatively dry or high-temperature conditions.  相似文献   
996.
Bdelloid rotifers are basal consumers in aquatic and limnoterrestrial communities that feed primarily on small bacteria. Unfortunately, we know only a little of the role they play in the trophic dynamics in some unusual habitats they inhabit. Habrotrocha thienemanni is a typical example; it is a typical tree-hole inhabitant, commonly achieving dense populations. Filtering rates of H. thienemanni were estimated using fluorescent microspheres of a size close to natural bacterial community (0.5 μm in diameter) at two temperatures (15 and 20°C). This microspheres artificial food had been coated with BSA protein. Mean clearance rates of this rotifer varied between 1.65 and 3.79 μl ind−1 h−1 under different temperatures. Uptake of particles coated with protein was significantly higher than that on uncoated particles (t = 2.85; P = 0.005). Particle uptake also was correlated to the body size of the animal (r = 0.44; P = 0.004,). The clearance rate of the natural H. thienemanni population (56,800 ind l−1) ranged from 981 to 5170 ml l−1 d−1.  相似文献   
997.
Fitness and life table parameters of two endoparasitoids of the obscure mealybug Pseudococcus viburni (Signoret), the solitary Leptomastix epona (Walker) and the gregarious Pseudaphycus flavidulus (Brèthes), were examined in relation to temperature and host size with a view to determine the efficacy of the parasitoids as biocontrol agents of the pest. Three temperature levels (21°C, 26°C and 31°C) and two host sizes classes (small, which mostly comprised third instar nymphs and large, which consisted of female adults) were studied. The lower developmental threshold and thermal constant of the host and the parasitoids were found similar so the coincidence of pest and parasitoids is likely. The rate of development of the parasitoids increased with a linear trend as the temperature increased from 21°C to 31°C. Temperature had a significant effect on mummification in both parasitoid species and on successful parasitism by P. flavidulus. Host size had a significant effect on the mummification caused by L. epona and on the proportion of the male offspring which emerged as well as on the successful parasitism by P. flavidulus. Life table parameters of the parasitoids were estimated in small and large hosts at 26°C in the laboratory. Both parasitoids achieved a greater intrinsic rate of natural increase and gross reproductive rate in addition to a shorter generation and doubling time in large mealybugs compared with small ones. Consequently, large hosts are expected to have a higher impact on the rise of the parasitoids population and the potential of the parasitoids to control the mealybug population improves with the increase of host size. Handling Editor: Torsen Meiners.  相似文献   
998.
The mitochondria of intertidal invertebrates continue to function when organisms are exposed to rapid substantial shifts in temperature. To test if mitochondrial physiology of the clam Mercenaria mercenaria is compromised under elevated temperatures, we measured mitochondrial respiration efficiency at 15°C, 18°C, and 21°C using a novel, high-throughput, microplate respirometry methodology developed for this study. Though phosphorylating (state 3) and resting (state 4) respiration rates were unaffected over this temperature range, respiratory control ratios (RCRs: ratio of state 3 to state 4 respiration rates) decreased significantly above 18°C (p < 0.05). The drop in RCR was not associated with reduction of phosphorylation efficiency, suggesting that, while aerobic scope of mitochondrial respiration is limited at elevated temperatures, mitochondria continue to efficiently produce adenosine triphosphate. We further investigated the response of clam mitochondria to elevated temperatures by monitoring phosphorylation of mitochondrial protein. Three proteins clearly demonstrated significant time- and temperature-specific phosphorylation patterns. The protein-specific patterns of phosphorylation may suggest that a suite of protein kinases and phosphatases regulate mitochondrial physiology in response to temperature. Thus, while aerobic scope of clam mitochondrial respiration is reduced at moderate temperatures, specific protein phosphorylation responses reflect large shifts in function that are initiated within the organelle at higher temperatures.  相似文献   
999.
《Process Biochemistry》2014,49(1):54-60
The application of high hydrostatic pressure (HHP) impairs electrostatic and hydrophobic intermolecular interactions, promoting the dissociation of recombinant inclusion bodies (IBs) under mild conditions that favor subsequent protein refolding. We demonstrated that IBs of a mutant version of green fluorescent protein (eGFP F64L/S65T), produced at 37 °C, present native-like secondary and tertiary structures that are progressively lost with an increase in bacterial cultivation temperature. The IBs produced at 37 °C are more efficiently dissociated at 2.4 kbar than those produced at 47 °C, yielding 25 times more soluble, functional eGFP after the lower pressure (0.69 kbar) refolding step. The association of a negative temperature (−9 °C) with HHP enhances the efficiency of solubilization of IBs and of eGFP refolding. The rate of refolding of eGFP as temperature increases from 10 °C to 50 °C is proportional to the temperature, and a higher yield was obtained at 20 °C. High level refolding yield (92%) was obtained by adjusting the temperatures of expression of IBs (37 °C), of their dissociation at HHP (−9 °C) and of eGFP refolding (20 °C). Our data highlight new prospects for the refolding of proteins, a process of fundamental interest in modern biotechnology.  相似文献   
1000.
A two-year study was conducted to explore summer development of macroalgae and their total phosphorus and nitrogen content at three stations in a broad and clear French carbonate river. Water discharge, temperature and insolation, each with a different time lag, as well as substrates and nutrients were examined in order to explain macroalgal biomass variability. Twenty-four macroalgae genera were recorded with Spirogyra, Cladophora, Vaucheria and Oedogonium as abundant. Through redundancy analysis the macroalgal community composition exhibited significant differences, between the sampling sites and also from one year to the next. Water discharge (time-lag = 5 days) and temperature (time-lag = 20 days) both significantly explained macroalgal biomass variability, highlighting differences in the time lag of the macroalgal community's ecological response to environmental changes. Spatial segregation was observed within the wide riverbed due to habitat variability, allowing co-occurrence in the development of ecologically different taxa within each sampling site. The high nitrate concentrations as compared with the particular low phosphorus concentrations led to especially high DIN/SRP ratios (248 ± 103, n = 18). The N/P ratios in algal tissues were high (25 ± 16, n = 26) and indicated P-limitation. The differences in DIN/SRP and N/P ratios suggest additional nutrient sources than open water such as groundwater inputs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号