首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   461篇
  免费   19篇
  国内免费   13篇
  2023年   2篇
  2022年   2篇
  2021年   10篇
  2020年   11篇
  2019年   5篇
  2018年   10篇
  2017年   4篇
  2016年   9篇
  2015年   8篇
  2014年   12篇
  2013年   25篇
  2012年   11篇
  2011年   12篇
  2010年   5篇
  2009年   19篇
  2008年   8篇
  2007年   16篇
  2006年   10篇
  2005年   7篇
  2004年   7篇
  2003年   13篇
  2002年   19篇
  2001年   19篇
  2000年   9篇
  1999年   7篇
  1998年   15篇
  1997年   18篇
  1996年   16篇
  1995年   20篇
  1994年   14篇
  1993年   24篇
  1992年   18篇
  1991年   18篇
  1990年   18篇
  1989年   21篇
  1988年   22篇
  1987年   13篇
  1986年   3篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   4篇
排序方式: 共有493条查询结果,搜索用时 156 毫秒
91.
Randomly Amplified Polymorphic DNA (RAPD) methods have been adapted for use as a phenetic tool on the legume tribe Cassiinae. RAPD-generated polymorphism within local populations was lower than between populations from different geographic regions, between species and genera. Examination of three Cassia species, 12 Chamaecrista species and 13 Senna species using eight primers showed the potential for separation of the nodulated/nitrogen fixing genus Chamaecrista from the previously congeneric groups Cassia and Semis. Similarly, RAPD analysis of two groups of nine Ch. rotundifolia and nine Ch. mimosoides samples using 11 primers has given separation according to both species and to geographical location. Analysis of a small sample of five Chamaecrista species from Brazil with eight primers gave separation consistent with known variations in nodule structure.  相似文献   
92.
A lime-pellet around seeds of lucerne significantly increased crown nodulation in an acid soil. To investigate whether neutralization or calcium were of importance when lime was supplied, experiments with plants were done either in pots or in rhizotrons. Crown nodulation was used to quantify the effect of these two parameters.For the neutralization of the soil, KOH (in pots) or K2CO3 (in rhizotrons) was added. The crown nodulation of pot-grown plants increased from 31% to 53%. In rhizotrons, the number of crown-nodulated seedlings increased from 9% to 53%. If calcium was supplied additionally (as CaCl2 or CaSO4), 63% crown nodulation was found in pots, and 68% in rhizotrons. These numbers are close to the crown nodulation with lime (CaCO3) alone: 70% in pots and 71% in rhizotrons. In the soil studied, the beneficial effect of lime is largely due to neutralization (80%), and only a minor part (20%) is due to the input of calcium.Using rhizotrons, the dynamics of the pH in the rhizosphere of lime-treated and untreated seedlings was followed during a period of 12 days. It was found that, even in the absence of lime, the pH along the taproot increased from 5.1 to 5.7. However, this did not result in the formation of root nodules. Nodulation was obtained only by adding neutralizing chemicals, which increased the pH during the initial 3 days, the acid sensitive period of the process.  相似文献   
93.
Sesbania rostrata developed nitrogen fixing nodules on the stem after spraying the plants with the bacterial culture TCSR 1. The number of stem nodules at 55 days after sowing was about 1200. Plants with stem nodules had a significantly reduced number of root nodules. The biomass of S. rostrata was comparable to the locally well adapted non-stem nodulating species S. aculeata. The %N and total nitrogen content were highest in S. rostrata compared to the other three species studied.  相似文献   
94.
95.
Inoculation of soybean (Glycine max. cv. Bragg) plants with high level inoculum partially alleviated the nitrate inhibition of nodule formation (3 to 4 fold), but not nodule growth. This alleviation did not require the bacterial nitrate reductase asBradyrhizobium japonicum mutant strains 110CR1 and 110CR2 (both lacking assimilatory nitrate reductase activity) gave the same results as the wild type parent 311b110. The study was carried out in the glasshouse, thereby confirming preliminary field data by Herridgeet al. (1984) using a wild type bacterial inoculant.  相似文献   
96.
Nodulation tests onin-vitro propagated clones ofAlnus glutinosa ecotypes (forest ecotype, pioneer ecotype) withFrankia strains originating from both ecotypes indicated differences in host-plant compatibility. Inoculated plants of the pioneer ecotype clone were not infected by strains, that were unable to fix nitrogen in pure culture. Nodulation could only be induced on the clone of the forest ecotype, but no nitrogen-fixing activity could be detected. Ultra-structural observations of the nodules by SEM and TEM indicated that ineffectivity of these strains was correlated with the lack of vesicles in the infected cells. Cells were only filled with hyphae: neither sporangia nor vesicles could be detected. In contrast, effective nodules could be obtained on both alder clones after inoculation with an effective strain, showing normal development of vesicle clusters in infected cells. In pure culture the ineffective strains produced no vesicles; sporangia were found only during early stage of growth. The results demonstrate the existence ofFrankia strains which were either non-infective or ineffective on different clones ofAlnus glutinosa.  相似文献   
97.
Eighty soybean cultivars were assessed for their potential for nodulation and nitrogen fixation with indigenous rhizobia in a Nigerian soil. Seventy-six days after planting (DAP) 87%, 3% and 10% of the soybean cultivars had from 0 to 30, 31 to 60 and over 61 nodules/plant, respectively. Only 8% had a nodule dry weight of 600 to 1100 mg/plant. At 84 DAP the proportion of nitrogen derived from the atmosphere (Ndfa) ranged from 0 to 65% 16% of the cultivars derived 51 to 65% of their N2 from the atmosphere. The diversity of soybean germplasm and the variation in nodulation and N2 fixation permitted the selection of the five best cultivars in terms of their compatibility with indigenous rhizobia, % Ndfa and the amount of N2 which they fixed.  相似文献   
98.
Six strains and a commercial inoculant ofBradyrhizobium japonicum were evaluated in association withGlycine max (L.) cultivar Clark. Inoculated and uninoculated plants were grown in pot and field experiments. Nodules were counted and weighed and roots and shoots were separated and analysed for total nitrogen. In pot experiments, two of six bacterial strains were superior to the other four, and to the commercial inoculant (Nitragin) in promoting greater root and top growth and plant nitrogen accumulation. In the field experiment, there were indications that environmental conditions may have affected nodulation by the bacteria. The strains could be divided into three groups according to nodule efficiencies, accumulation of plant dry matter, and total nitrogen content. The greater variations in nodule efficiencies of the tested strains could be attributed to the quantities of bacteroid, cytosol protein and leghaemoglobin in the nodules.  相似文献   
99.
Rhizobium SBS-R100, isolated from the stem nodules ofSesbania procumbens, synthesized -galactosidase constitutively. Transposon mutagenesis by Tn9 induced mutants defective in lactose utilization; the mutations did not interfere with growth, nodulation or N2 fixation. Mouse monoclonal antibody raised against -galactosidase ofEscherichia coli reacted with soluble proteins of wild typeRhizobium SBS-R100. Anin vivo constructed recombinant plasmid pSBS-4 complemented aRhizobium mutant defective in lactose utilization.  相似文献   
100.
Plants associated with symbiotic N‐fixing bacteria play important roles in early successional, riparian and semi‐dry ecosystems. These so‐called N‐fixing plants are widely used for reclamation of disturbed vegetation and improvement of soil fertility in agroforestry. Yet, available information about plants that are capable of establishing nodulation is fragmented and somewhat outdated. This article introduces the NodDB database of N‐fixing plants based on morphological and phylogenetic evidence (available at https://doi.org/10.15156/bio/587469 ) and discusses plant groups with conflicting reports and interpretation, such as certain legume clades and the Zygophyllaceae family. During angiosperm evolution, N‐fixing plants became common in the fabid rather than in the ‘nitrogen‐fixing’ clade. The global GBIF plant species distribution data indicated that N‐fixing plants tend to be relatively more diverse in savanna and semi‐desert biomes. The compiled and re‐interpreted information about N‐fixing plants enables accurate analyses of biogeography and community ecology of biological N fixation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号