首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   8篇
  国内免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   4篇
  2012年   5篇
  2011年   4篇
  2010年   4篇
  2009年   4篇
  2008年   7篇
  2007年   7篇
  2006年   6篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   7篇
  2001年   4篇
  2000年   8篇
  1999年   9篇
  1998年   8篇
  1997年   6篇
  1996年   8篇
  1995年   5篇
  1994年   13篇
  1993年   6篇
  1992年   3篇
  1991年   10篇
  1990年   5篇
  1989年   2篇
  1988年   7篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1977年   1篇
  1974年   2篇
排序方式: 共有207条查询结果,搜索用时 62 毫秒
81.
Salinization of land is likely to increase due to climate change with impact on agricultural production. Since most species used as crops are sensitive to salinity, improvement of salt tolerance is needed to maintain global food production. This review summarises successes and failures of transgenic approaches in improving salt tolerance in crop species. A conceptual model of coordinated physiological mechanisms in roots and shoots required for salt tolerance is presented. Transgenic plants overexpressing genes of key proteins contributing to Na+ ‘exclusion’ (PM-ATPases with SOS1 antiporter, and HKT1 transporter) and Na+ compartmentation in vacuoles (V-H+ATPase and V-H+PPase with NHX antiporter), as well as two proteins potentially involved in alleviating water deficit during salt stress (aquaporins and dehydrins), were evaluated. Of the 51 transformations, with gene(s) involved in Na+ ‘exclusion’ or Na+ vacuolar compartmentation that contained quantitative data on growth and include a non-saline control, 48 showed improvements in salt tolerance (less impact on plant mass) of transgenic plants, but with only two tested in field conditions. Of these 51 transformations, 26 involved crop species. Tissue ion concentrations were altered, but not always in the same way. Although glasshouse data are promising, field studies are required to assess crop salinity tolerance.  相似文献   
82.
The discovery of catalytic RNA has revolutionised modern molecular biology and bears important implications for the origin of Life research. Catalytic RNA, in particular self-replicating RNA, prompted the hypothesis of an early “RNA world” where RNA molecules played all major roles such information storage and catalysis. The actual role of RNA as primary actor in the origin of life has been under debate for a long time, with a particular emphasis on possible pathways to the prebiotic synthesis of mononucleotides; their polymerization and the possibility of spontaneous emergence of catalytic RNAs synthesised under plausible prebiotic conditions. However, little emphasis has been put on the chemical reality of an RNA world; in particular concerning the chemical constrains that such scenario should have met to be feasible. This paper intends to address those concerns with regard to the achievement of high local RNA molecules concentration and the aetiology of unique sequence under plausible prebiotic conditions. Presented at: International School of Complexity – 4th Course: Basic Questions on the Origins of Life; “Ettore Majorana” Foundation and Centre for Scientific Culture, Erice, Italy, 1–6 October 2006.  相似文献   
83.
The architecture of plant metabolism includes substantial duplication of metabolite pools and enzyme catalyzed reactions in different subcellular compartments. This poses challenges for understanding the regulation of metabolism particularly in primary metabolism and amino acid biosynthesis. To explore the extent to which amino acids are made in single compartments and to gain insight into the metabolic precursors from which they derive, we used steady state (13) C labelling and analysed labelling in protein amino acids from plastid and cytosol. Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a major component of green tissues and its large and small subunits are synthesized from different pools of amino acids in the plastid and cytosol, respectively. Developing Brassica napus embryos were cultured in the presence of [U-(13) C]-sucrose, [U-(13) C]-glucose, [U-(13) C]-glutamine or [U-(13) C]-alanine to generate proteins. The large subunits (LSU) and small subunits (SSU) of Rubisco were isolated and the labelling in their constituent amino acids was analysed by gas chromatography-mass spectrometry. Amino acids including alanine, glycine and serine exhibited different (13) C enrichment in the LSU and SSU, demonstrating that these pools have different metabolic origins and are not isotopically equilibrated between the plastid and cytosol on the time scale of cellular growth. Potential extensions of this novel approach to other macromolecules, organelles and cell types of eukaryotes are discussed.  相似文献   
84.
The malate-aspartate (M-A) shuttle provides an important mechanism to regulate glycolysis and lactate metabolism in the heart by transferring reducing equivalents from cytosol into mitochondria. However, experimental characterization of the M-A shuttle has been incomplete because of limitations in quantifying cytosolic and mitochondrial metabolites. In this study, we developed a multi-compartment model of cardiac metabolism with detailed presentation of the M-A shuttle to quantitatively predict non-observable fluxes and metabolite concentrations under normal and ischemic conditions in vivo. Model simulations predicted that the M-A shuttle is functionally localized to a subdomain that spans the mitochondrial and cytosolic spaces. With the onset of ischemia, the M-A shuttle flux rapidly decreased to a new steady state in proportion to the reduction in blood flow. Simulation results suggest that the reduced M-A shuttle flux during ischemia was not due to changes in shuttle-associated enzymes and transporters. However, there was a redistribution of shuttle-associated metabolites in both cytosol and mitochondria. Therefore, the dramatic acceleration in glycolysis and the switch to lactate production that occur immediately after the onset of ischemia is mediated by reduced M-A shuttle flux through metabolite redistribution of shuttle associated species across the mitochondrial membrane.  相似文献   
85.
Effect of Si on the distribution of Cd in rice seedlings   总被引:27,自引:0,他引:27  
Growth chamber studies were conducted to investigate the effects of silicon (Si) on the distribution of Cd in rice seedlings (Oryza sativa L., cv. Qiu Guang) grown hydroponically under toxic level of cadmium (Cd). Si added significantly alleviated the toxicity of Cd in aerobic rice seedlings. Si partly overcame the reduction in growth due to Cd. This amelioration was correlated with a reduction in Cd uptake. Si increased Cd accumulation in the roots and restricted the transport of Cd from roots to shoots, where the distribution of Cd in the shoots decreased by 33%. Si reduced the transport of Cd and the apoplastic fluorescence tracer PTS (tri-sodium-8-hydroxy-1, 3, 6-pyrenesulphonate) from roots to shoots by 23 and 36%, respectively. Energy-dispersive X-ray analysis (EDX) showed Cd was mainly deposited in the vicinity of the endodermis and epidermis, Si deposition was heavier in the vicinity of the endodermis than in the epidermis. Although the tracing result of fluorescein isothiocyanate-dextrans showed Si did not change epidermal wall porosity, the significant reduction of apoplastic PTS transport in +Si plants suggested that the heavy deposition of silica in the vicinity of endodermis might offer possible mechanisms by which silicon did at least partially physically block the apoplast bypass flow across the roots, and restrained the apoplastic transport of Cd. In addition, the effect of Si on the subcellular distribution and chemical form of Cd was investigated by fractionation. Si decreased the concentrations of Cd in shoots and roots, but did not remarkably change the distribution ratio of Cd in symplasm and apoplast. Mechanisms by which Si alleviates the toxicity of Cd in rice seedlings are discussed.  相似文献   
86.
Glutathione (GSH) homeostasis in plants is essential for cellular redox control and efficient responses to abiotic and biotic stress. Compartmentation of the GSH biosynthetic pathway is a unique feature of plants. The first enzyme, γ-glutamate cysteine ligase (GSH1), responsible for synthesis of γ-glutamylcysteine (γ-EC), is, in Arabidopsis, exclusively located in the plastids, whereas the second enzyme, glutathione synthetase (GSH2), is located in both plastids and cytosol. In Arabidopsis, gsh2 insertion mutants have a seedling lethal phenotype in contrast to the embryo lethal phenotype of gsh1 null mutants. This difference in phenotype may be due to partial replacement of GSH functions by γ-EC, which in gsh2 mutants hyperaccumulates to levels 5000-fold that in the wild type and 200-fold wild-type levels of GSH. In situ labelling of thiols with bimane and confocal imaging in combination with HPLC analysis showed high concentrations of γ-EC in the cytosol. Feedback inhibition of Brassica juncea plastidic GSH1 by γ-EC in vitro strongly suggests export of γ-EC as functional explanation for hyperaccumulation. Complementation of gsh2 mutants with the cytosol-specific GSH2 gave rise to phenotypically wild-type transgenic plants. These results support the conclusion that cytosolic synthesis of GSH is sufficient for plant growth. The transgenic lines further show that, consistent with the exclusive plastidic localization of GSH1, γ-EC is exported from the plastids to supply the cytosol with the immediate precursor for GSH biosynthesis, and that there can be efficient re-import of GSH into the plastids to allow effective control of GSH biosynthesis through feedback inhibition of GSH1.  相似文献   
87.
Miller AJ  Smith SJ 《Annals of botany》2008,101(4):485-489
BACKGROUND AND AIMS: question of whether homeostasis occurs for some nutrients and, if so, what are the consequences for how plants sense their nutrient status. Particularly for nitrate, this controversy has focused on the methods used and the cellular pools which they measure. Cytoplasm and cytosol have been distinguished and it has been suggested that two ranges of nitrate values can be separated depending on whether the method separates the pools found in organelles. SCOPE: The present study defines homeostasis of nutrient ions and discusses how whole organ averaging techniques can hide important cellular differences that can help to explain some of the discrepancies between results reported by various methods. These results are considered in relation to a possible role in signalling nutrient status, and have relevance to other averaging techniques such as the use of 'omics' technologies.  相似文献   
88.
Efficient root-to-shoot translocation is a key trait of the zinc/cadmium hyperaccumulators Thlaspi caerulescens and Thlaspi praecox, but the extent of variation among different accessions and the underlying mechanisms remain unclear. Root-to-shoot translocation of Cd and Zn and apoplastic bypass flow were determined in 10 accessions of T. caerulescens and one of T. praecox, using radiolabels (109)Cd and (65)Zn. Two contrasting accessions (Pr and Ga) of T. caerulescens were further characterized for TcHMA4 expression and metal compartmentation in roots. Root-to-shoot translocation of (109)Cd and (65)Zn after 1 d exposure varied 4.4 to 5-fold among the 11 accessions, with a significant correlation between the two metals, but no significant correlation with uptake or the apoplastic bypass flow. The F(2) progeny from a cross between accessions from Prayon, Belgium (Pr) and Ganges, France (Ga) showed a continuous phenotype pattern and transgression. There was no significant difference in the TcHMA4 expression in roots between Pr and Ga. Compartmentation analysis showed a higher percentage of (109)Cd sequestered in the root vacuoles of Ga than Pr, the former being less efficient in translocation than the latter. Substantial natural variation exists in the root-to-shoot translocation of Cd and Zn, and root vacuolar sequestration may be an important factor related to this variation.  相似文献   
89.
植物抗盐机理研究进展   总被引:36,自引:0,他引:36  
对近年来植物抗盐机理的研究进展作了概述,阐明了植物对盐分的反应及盐分对植物的不同伤害,并从盐生植物的形态、生理和分子水平上综述了盐生植物的抗盐机理,最后对今后植物抗盐机理的研究可能存在的问题提出了自己的观点.  相似文献   
90.
Abstract : The mechanisms regulating the compartmentation of acetylcholine (ACh) and the relationship between transmitter release and ACh stores are not fully understood. In the present experiments, we investigated whether the inhibitors of serine/threonine phosphatases 1 and 2A, calyculin A and okadaic acid, alter subcellular distribution and the release of ACh in rat hippocampal slices. Calyculin A and okadaic acid significantly (p < 0.05) depleted the occluded ACh of the vesicular P3 fraction, but cytoplasmic ACh contained in the S3 fraction was not significantly affected. The P3 fraction is known to be heterogeneous ; calyculin A and okadaic acid reduced significantly (p < 0.05) the amount of ACh recovered with a monodispersed fraction (D) of synaptic vesicles, but the other nerve terminal bound pools (E-F and G-H) were not so affected. K+-evoked ACh release decreased significantly (p < 0.01) in the presence of calyculin A and okadaic acid, suggesting that fraction D's vesicular store of ACh contributes to transmitter release. The loss of ACh from synaptic vesicle fractions prepared from tissue exposed to phosphatase inhibitors appeared not to result from a reduced ability to take up ACh. Thus, when tissue was allowed to synthesize [3H]ACh from [3H]choline, the ratio of [3H]ACh in the S3 to P3 fractions was not much changed by exposure of tissue to calyculin A or okadaic acid ; furthermore, the specific activity of ACh recovered from the D fraction was not reduced disproportionately to that of cytosolic ACh. The changes are considered to reflect reduced synthesis of ACh by tissue treated with the phosphatase inhibitors, rather than an effect on vesicle uptake mechanisms. Thus, exposure of tissue to calyculin A or okadaic acid appears to produce selective depletion of tissue ACh content in a subpopulation of synaptic vesicles, suggesting that phosphatases play a role in ACh compartmentation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号