首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   568篇
  免费   18篇
  国内免费   7篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   11篇
  2019年   5篇
  2018年   4篇
  2017年   7篇
  2016年   7篇
  2015年   4篇
  2014年   19篇
  2013年   23篇
  2012年   12篇
  2011年   18篇
  2010年   9篇
  2009年   13篇
  2008年   25篇
  2007年   29篇
  2006年   29篇
  2005年   30篇
  2004年   36篇
  2003年   31篇
  2002年   31篇
  2001年   24篇
  2000年   34篇
  1999年   26篇
  1998年   19篇
  1997年   17篇
  1996年   23篇
  1995年   18篇
  1994年   16篇
  1993年   17篇
  1992年   15篇
  1991年   15篇
  1990年   2篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   3篇
  1985年   1篇
排序方式: 共有593条查询结果,搜索用时 15 毫秒
81.
Abstract: At the C-terminal end of Rubisco's large subunit major differences in sequence length and in charges of the amino acid residues occur in unicellular organisms and in plants. This C-terminal segment of the large subunit participates in large movements during the catalytic cycle. It participates in the closing mechanism of the binding niche for the substrate RuBP, changing from an ordered structure in the "open" enzyme conformation to a position, stretched over the protein surface, in a "closed" conformation. We analyzed the sequence variability in the C terminus in rbcL to investigate whether this structurally important entity evolved in an ordered process. Cyanobacteria and chlorophytes show similar C-terminal sequences (DXX), whereby D-473 is the last strictly conserved amino acid residue for all rbcLs . Contrary to the gymnosperms (D + 2 residues), the C termini of the angiosperms show variable lengths from D + 2 to D + 17 residues. The plant orders of Asterales, Batales, Cap-parales, Caryophyllales, Fabales, Gentianales, Lamiales, Ru-biales, Myrtales, Scrophulariales, and Solanales contain species with particularly elongated C termini. Recent studies regarding enzyme kinetics demonstrated that molecules with longer C termini are better adapted for a wider temperature range. We speculate that longer C termini confer properties to the enzyme that modulate the success of different species in different environments. This is supported by the fact that "modern" (e.g., phylogenetically young taxa in an actual radiation process) generally display a long C terminus, while conservative taxa have a relatively short C terminus.  相似文献   
82.
Abstract: To study physiological responses of mature forest trees to elevated CO2 after lifetime growth under elevated atmospheric CO2 concentrations ( p CO2), photosynthesis, Rubisco content, foliar concentrations of soluble sugars and starch, sugar concentrations in transport tissues (phloem and xylem), structural biomass, and lignin in leaves and branches were investigated in 30- to 50-year-old Quercus pubescens and Q. ilex trees grown at two naturally elevated CO2 springs in Italy. Ribulose-1,5-bisphosphate carboxylase/oxygenase content was decreased in Q. pubescens grown under elevated CO2 concentrations, but not in Q. ilex. Photosynthesis was consistently higher in Q. pubescens grown at elevated CO2 as compared with "control" sites, whereas the response in Q. ilex was less pronounced. Stomatal conductance was lower in both species leading to decreased transpiration and increased instantaneous water use efficiency in Q. pubescens. Overall mean sugar + starch concentrations of the leaves were not affected by elevated p CO2, but phloem exudates contained higher concentrations of soluble sugars. This finding suggests increased transport to sinks. Qualitative changes in major carbon-bearing compounds, such as structural biomass and lignins, were only found in bark but not in other tissues. These results support the concept that the maintenance of increased rates of photosynthesis after long-term acclimation to elevated p CO2 provides a means of optimization of water relations under arid climatic conditions but does not cause an increase in aboveground carbon sequestration per unit of tissue in Mediterranean oak species.  相似文献   
83.
Rice (Oryza sativa[L.] cv. IR-72) was grown for a season in sunlit, controlled-environment chambers at 350 or 700 µmol CO2 mol?1 under continuously flooded (unstressed) or drought-imposed periods at panicle initiation (stressed). The midday canopy photosynthetic rates (Pn), measured at the CO2 concentration ([CO2]) used for growth, were enhanced by high [CO2] but reduced by drought. High [CO2] increased Pn by 18 to 34% for the unstressed plants, and 6 to 12% for the stressed plants. In the unstressed plants, CO2 enrichment increased water-use efficiency (WUE) by 26%, and reduced evapotranspiration (ET) by 8 to 14%. Both high [CO2] and severe drought decreased the activity and content of ribulose bisphosphate carboxylase-oxygenase (Rubisco). High-CO2-unstressed plants had 6 to 22% smaller content and 5 to 25%, lower activity of Rubisco than ambient-CO2-unstressed plants. Under severe drought, reductions of Rubisco were 53 and 27% in activity and 40 and 12% in content, respectively, for ambient- and high-CO2 treatments. The apparent catalytic turnover rate (Kcat) of midday fully activated Rubisco was not altered by high [CO2], but severe drought reduced Kcat by 17 to 23%. Chloroplasts of the high-CO2 leaves contained more, and larger starch grains than those of the ambient CO2 leaves. High [CO2] did not affect the leaf sucrose content of unstressed plants. In contrast, severe drought reduced the leaf starch and increased the sucrose content in both CO2 treatments. The activity of leaf sucrose phosphate synthase of unstressed plants was not affected by high [CO2], whereas that of ambient-CO2-grown plants was reduced 45% by severe drought. Reduction in ET and enhancements in both Pn and WUE for rice grown under high [CO2] helped to delay the adverse effects of severe drought and allowed the stressed plants to assimilate CO2 for an extra day. Thus, rice grown in the next century may utilize less water, use water more efficiently, and be able to tolerate drought better under some situations.  相似文献   
84.
The CO2-concentrating mechanism (CCM) in cyanobacteria supports high rates of photosynthesis by greatly increasing the concentration of CO2 around the major carbon fixing enzyme, Rubisco. However, the CCM remains poorly understood, especially in regards to the enigmatic CO2-hydration enzymes which couple photosynthetically generated redox energy to the hydration of CO2 to bicarbonate. This CO2-hydration reaction is catalysed by specialized forms of NDH-1 thylakoid membrane complexes that contain phylogenetically unique extrinsic proteins that appear to couple CO2 hydration to NDH-1 proton pumping. The development of the first molecular genetic system to probe structure-function relationships of this important enzyme system is described. A CO2-hydration deficient strain was constructed as a recipient for DNA constructs containing different forms of the CO2-hydration system. This was tested by introducing a construct to an ectopic location that gives constitutive expression, rather than native inducible expression, of the ndhF3-ndhD3-cupA-cupS, (cupA operon) encoding high affinity CO2-hydration complex, NDH-13. Uptake assays show the restoration of high affinity for CO2 uptake, but demonstrate that the CupA complex can drive only modest uptake fluxes, underlining the importance of its tandem operation with the CupB-containing complex NDH-14, the complementary high flux, low affinity CO2 hydration system. Experiments with the carbonic anhydrase inhibitor, ethoxyzolamide, indicate that the NDH-13 complex is strongly inhibited, yet the remaining NDH-14 activity in the wild-type is less so, suggesting structural differences between the low affinity and high affinity CO2–hydration systems. This new construct will be an important tool to study and better understand cyanobacterial CO2 uptake systems.  相似文献   
85.
Rubisco is a major photosynthetic plant enzyme in the chloroplasts, catalyzing a photosynthetic reaction through carboxylation and oxygenation in the leaves. Despite its biological importance, its high abundance causes difficulties in the proper separation of protein mixtures during 2-dimensional gel electrophoresis (2-DE). Here, we resolved those plant soluble proteins by efficiently removing Rubisco. This resulted in a high quality and resolution of 2-DE gels. Rubisco removal was achieved through aggregation in the presence of a high DTT concentration, which subsequently increased the visualization of less abundant proteins and reduced horizontal streaking. This simple method may provide a means for finding more biologically important protein targets via plant proteomics.  相似文献   
86.
It has been suggested that desert vegetation will show the strongest response to rising atmospheric carbon dioxide due to strong water limitations in these systems that may be ameliorated by both photosynthetic enhancements and reductions in stomatal conductance. Here, we report the long‐term effect of 55 Pa atmospheric CO2 on photosynthesis and stomatal conductance for three Mojave Desert shrubs of differing leaf phenology (Ambrosia dumosa—drought‐deciduous, Krameria erecta—winter‐deciduous, Larrea tridentata—evergreen). The shrubs were growing in an undisturbed ecosystem fumigated using FACE technology and were measured over a four‐year period that included both above and below‐average precipitation. Daily integrated photosynthesis (Aday) was significantly enhanced by elevated CO2 for all three species, although Krameria erecta showed the greatest enhancements (63% vs. 32% for the other species) enhancements were constant throughout the entire measurement period. Only one species, Larrea tridentata, decreased stomatal conductance by 25–50% in response to elevated CO2, and then only at the onset of the summer dry season and following late summer convective precipitation. Similarly, reductions in the maximum carboxylation rate of Rubisco were limited to Larrea during spring. These results suggest that the elevated CO2 response of desert vegetation is a function of complex interactions between species functional types and prevailing environmental conditions. Elevated CO2 did not extend the active growing season into the summer dry season because of overall negligible stomatal conductance responses that did not result in significant water conservation. Overall, we expect the greatest response of desert vegetation during years with above‐average precipitation when the active growing season is not limited to ~ 2 months and, consequently, the effects of increased photosynthesis can accumulate over a biologically significant time period.  相似文献   
87.
研究了大田生长条件下两系超高产杂交水稻(Oryza sati va L.)"两优培九"和我国大面积推广的三系杂交水稻"汕优63"从灌浆期到收获期剑叶PSⅡ光化学特性和Rubjsco大、小亚基含量的变化.结果表明:可溶性蛋白质和叶绿素含量随剑叶生长时间的延长先缓慢下降,后期有一个快速降解的过程,"汕优63"降解的速率高于"两优培九";Fv/Fm和qP都呈下降的趋势,qN则是先降然后上升.激发压(1 qP)在前期的变化较为平稳,后期则急剧增加,"汕优63"较"两优培九"增加快.Rubi Sco大、小亚基的含量与叶绿素、可溶性蛋白含量一样在前期下降比较慢,后期也有一个快速降解的过程,"汕优63"比"两优培九"降解快.激发压的增加与Rubisco大、小亚基的降解呈显著的线性相关性.我们推测PSⅡ激发压的急剧增加可能诱发了水稻剑叶的快速衰老过程."两优培九"高产的重要生理原因之,可能是它比"汕优63"有更强的光合能力并能维持更持久和较高的光合功能期.  相似文献   
88.
Morpho-physiological and biochemical responses of Arabidopsis thaliana (accession N1438) to bicarbonate-induced iron deficiency were investigated. Plants were grown in cabinet under controlled conditions, in a nutrient solution containing 5 μM Fe, added or not with 10 mM NaHCO3. After 30 days, bicarbonate-treated plants displayed significantly lower biomass, leaf number and leaf surface area as compared to control plants, and slight yellowing of their younger leaves was observed. Potassium (K+) content was not modified by bicarbonate treatment in roots, whereas it was significantly diminished in shoots. Their content in ferrous iron (Fe2+) and in leaf total chlorophylls was noticeably lower than in control plants. Root Fe(III)-chelate reductase and phosphoenolpyruvate carboxylase (PEPC) activities were significantly enhanced, but leaf ribulose 1.5-bisphosphate carboxylase (Rubisco) activity was decreased.  相似文献   
89.
To determine the effects of phosphorus nutrition on chilling tolerance of photosynthetic apparatus, tomato (Lycopersicon esculentum Mill. cv. Kenfengxin 2002) plants were raised under different P contents and subjected to 7 d of chilling at 9/7 °C. After chilling (2 h or 7 d) plant growth, P content in tissue, gas exchange and chlorophyll fluorescence were measured. Decreasing P concentration [P] in the nutrient solution markedly reduced plant growth and the chilled plants exhibiting higher optimum [P] than the unchilled plants. Decreasing [P] significantly decreased light saturated net photosynthetic rate (PNsat), maximum carboxylation velocity of Rubisco (Vcmax), maximum potential rate of electron transport contributed to Rubisco regeneration (Jmax), quantum efficiency of photosystem (PS) 2 (ΠPS2) and O2 sensitivity of PNsat (PSO2) and this trend was especially apparent in chilled plants.  相似文献   
90.
Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination with leaf angle control. Two sites with natural leaf positions had ground angles of 0° (‘level site’) and 45° (‘sloping site’), while at a third site the leaves were fixed in an angle of 45° to homogenize the irradiance dose (‘fixed leaf angle site’). The photosynthetic performance of the leaves was characterized by simultaneous gas exchange and chlorophyll fluorescence measurements and the PSII performance through the growing season was investigated with fluorescence measurements. Leaf harvest towards the end of the growing season was done to determine the specific leaf area and the content of carbon, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate of electron transport (Jmax) and the maximum carboxylation rate of Rubisco (Vcmax), and the PSII performance showed a decreased quantum yield and increased energy dissipation. A parallel response pattern and reduced PSII performance at all three sites indicate that these responses take place in all leaves across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号