首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4004篇
  免费   96篇
  国内免费   52篇
  2024年   3篇
  2023年   19篇
  2022年   34篇
  2021年   74篇
  2020年   48篇
  2019年   54篇
  2018年   72篇
  2017年   42篇
  2016年   39篇
  2015年   101篇
  2014年   242篇
  2013年   290篇
  2012年   174篇
  2011年   244篇
  2010年   277篇
  2009年   220篇
  2008年   214篇
  2007年   236篇
  2006年   185篇
  2005年   154篇
  2004年   159篇
  2003年   144篇
  2002年   109篇
  2001年   40篇
  2000年   56篇
  1999年   68篇
  1998年   50篇
  1997年   41篇
  1996年   53篇
  1995年   61篇
  1994年   57篇
  1993年   26篇
  1992年   42篇
  1991年   28篇
  1990年   24篇
  1989年   32篇
  1988年   23篇
  1987年   33篇
  1986年   16篇
  1985年   28篇
  1984年   71篇
  1983年   68篇
  1982年   69篇
  1981年   39篇
  1980年   38篇
  1979年   29篇
  1978年   8篇
  1977年   5篇
  1976年   4篇
  1970年   2篇
排序方式: 共有4152条查询结果,搜索用时 335 毫秒
81.
Phosphoinositides play important roles in Golgi traffic and structural integrity. Specific lipid kinases and phosphatases associate with the Golgi complex and regulate the multiplicity of trafficking routes from this organelle. Work in different model systems showed that the basic elements that regulate lipid signaling at the Golgi are conserved from yeast to humans. Many of the enzymes involved in Golgi phosphoinositide metabolism are essential for viability or cause severe human disease when malfunctioning. Phosphoinositide effectors at the Golgi control both non-vesicular transfer of lipids and sorting of secretory and membrane proteins. In addition, Golgi phosphoinositides were recently implicated in the metabolic and cell growth-dependent regulation of the secretory pathway.  相似文献   
82.
In order to study the mechanism of monoclonal antibody (McAb) against a porcine 40-kDa adipocyte-specific plasma membrane protein in reducing fat deposition, porcine primary adipocytes were treated with the McAb during the process of adipocyte differentiation; its effect on expression of lipid metabolism related genes was investigated. Adipocytes were treated with 1-methyl-3-isobutylmethylxanthine (IDX) plus 10 μg/mL of the McAb or without McAb. The mRNA levels of adipocyte differentiation related genes (PPARγ and C/EBPα), lipid metabolism related genes (FAS, HSL, CPT-1B, DGAT and A-FABP) and adiponectin gene (AdipoQ) were determined using real-time quantitative PCR. The results showed that the differentiated adipocyte number and triglyceride (TG) content in adipocytes treated with the McAb were lower than that in cells without McAb during the whole process of adipocyte differentiation. The McAb significantly reduced mRNA expression of PPARγ, C/EBPα, FAS, DGAT, A-FABP and adiponectin genes, but increased mRNA expression of HSL and CPT-1B genes during the medium and latter stage of adipocyte differentiation. This suggested that the McAb decreased triglycerol accumulation in adipocyte by both inhibiting adipocyte differentiation and regulating lipid metabolism, especially at the medium and latter stage of porcine adipocyte differentiation.  相似文献   
83.
We have studied the effect of acidic pH on the phase behavior of the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) using differential scanning calorimetry and x-ray scattering. Dispersions of DMPC in HCl solutions of pH = 4 and 3 behave identical to dispersions in water. The main transition temperature increases sharply and the pre-transition disappears at lower pH. An untilted gel phase is observed at pH = 2 and 1, in contrast to the tilted gel phase found at higher pH. The relatively large periodicity of the untilted gel phase, in comparison to that of the tilted gel phase occurring near neutral pH, clearly demonstrates the simultaneous charging and dehydration of the headgroups as the pH approaches the pK of the phosphate group. Headgroup dehydration at low pH also leads to the formation of DMPC crystallites and the inverted hexagonal phase at low and high temperatures, respectively, after a few days of incubation. These results show the significant effect of acidic pH on the phase behavior of zwitterionic lipids.  相似文献   
84.
A Disintegrin And Metalloprotease 23 (ADAM23) is a member of the ADAMs family of transmembrane proteins, mostly expressed in nervous system, and involved in traffic and stabilization of Kv1-potassium channels, synaptic transmission, neurite outgrowth, neuronal morphology and cell adhesion. Also, ADAM23 has been linked to human pathological conditions, such as epilepsy, cancer metastasis and cardiomyopathy. ADAM23 functionality depends on the molecule presence at the cell surface and along the secretory pathway, as expected for a cell surface receptor. Because endocytosis is an important functional regulatory mechanism of plasma membrane receptors and no information is available about the traffic or turnover of non-catalytic ADAMs, we investigated ADAM23 internalization, recycling and half-life properties. Here, we show that ADAM23 undergoes constitutive internalization from the plasma membrane, a process that depends on lipid raft integrity, and is redistributed to intracellular vesicles, especially early and recycling endosomes. Furthermore, we observed that ADAM23 is recycled from intracellular compartments back to the plasma membrane and thus has longer half-life and higher cell surface stability compared with other ADAMs. Our findings suggest that regulation of ADAM23 endocytosis/stability could be exploited therapeutically in diseases in which ADAM23 is directly involved, such as epilepsy, cancer progression and cardiac hypertrophy.  相似文献   
85.
Background/aimThe ingestion of contaminated seafood by MeHg is considered the main route of human exposure, turning the salivary gland one important target organ. The salivary glands play critical roles in maintaining oral health homeostasis, producing saliva that maintains the oral microbiota, initiation of the digestion of macromolecules, and being essential in maintaining the integrity of the adjacent soft tissues and teeth. Thus, this study aimed to investigate the effects of MeHg exposure on human salivary gland cells line.MethodsCells were exposed to 1–6 μM of MeHg for 24 h, and analysis of toxicity was performed. Based on these results, the LC50 was calculated and two concentrations were chosen (0.25 and 2.5 μM MeHg) to evaluate intracellular mercury (Hg) accumulation (THg), metabolic viability and oxidative stress parameters (GSH:GSSG ratio, lipid peroxidation, protein oxidation and DNA damage).ResultsThe results demonstrated accumulation of THg as we increased the MeHg concentrations in the exposure and, the higher the dose, the lower is the cell metabolic response. In addition, the 2.5 μM MeHg concentration also triggered oxidative stress in human salivary gland cells by depleting the antioxidant competence of GSH:GSSG ratio and increasing lipid peroxidation and proteins carbonyl levels, but no damages to DNA integrity.ConclusionIn conclusion, although these two elected doses did not show lethal effects, the highest dose triggered oxidative stress and new questionings about long-term exposure models are raised to investigate furthers cellular damages to human salivary gland cells caused by MeHg exposure to extrapolate in a translational perspective.  相似文献   
86.
目的探讨去卵巢对小鼠肠道菌群和血脂的影响。方法 12只10周龄C57BL/6小鼠随机分为2组:假手术组(SHAM组)和去卵巢组(OVX组),每组6只,进行12周的喂养。每2周测定小鼠体质量,12周后测肝脏指数、血清三酰甘油水平和游离脂肪酸水平,小肠进行病理学检查,收集小鼠粪便并在Illumina MiSeq测序平台进行16S rRNA基因测序检测。结果与SHAM组相比,OVX组小鼠体质量、肝脏指数、血清三酰甘油水平和游离脂肪酸水平明显增加(t=4.745,t=15.090,t=11.140,t=4.038,均P0.01)。与SHAM组相比,OVX组小鼠肠道Shannon Wiener指数明显降低(t=4.520,P0.01);在SMB53属(P=0.001)、拟杆菌属(P=0.017)、优杆菌属(P=0.018)、粪球菌属(P=0.019)、赖氨酸芽胞杆菌属(P=0.020)的丰度上差异有统计学意义。结论去卵巢小鼠血脂升高和肠道菌群失衡,提示肠道菌群可能是预防和治疗雌激素缺乏后脂质代谢异常的潜在靶点。  相似文献   
87.
Aldehydes produced under various environmental stresses can cause cellular injury in plants, but their toxicology in photosynthesis has been scarcely investigated. We here evaluated their effects on photosynthetic reactions in chloroplasts isolated from Spinacia oleracea L. leaves. Aldehydes that are known to stem from lipid peroxides inactivated the CO2 photoreduction to various extents, while their corresponding alcohols and carboxylic acids did not affect photosynthesis. α,β-Unsaturated aldehydes (2-alkenals) showed greater inactivation than the saturated aliphatic aldehydes. The oxygenated short aldehydes malondialdehyde, methylglyoxal, glycolaldehyde and glyceraldehyde showed only weak toxicity to photosynthesis. Among tested 2-alkenals, 2-propenal (acrolein) was the most toxic, and then followed 4-hydroxy-(E)-2-nonenal and (E)-2-hexenal. While the CO2-photoreduction was inactivated, envelope intactness and photosynthetic electron transport activity (H2O → ferredoxin) were only slightly affected. In the acrolein-treated chloroplasts, the Calvin cycle enzymes phosphoribulokinase, glyceraldehyde-3-phosphate dehydrogenase, fructose-1,6-bisphophatase, sedoheptulose-1,7-bisphosphatase, aldolase, and Rubisco were irreversibly inactivated. Acrolein treatment caused a rapid drop of the glutathione pool, prior to the inactivation of photosynthesis. GSH exogenously added to chloroplasts suppressed the acrolein-induced inactivation of photosynthesis, but ascorbic acid did not show such a protective effect. Thus, lipid peroxide-derived 2-alkenals can inhibit photosynthesis by depleting GSH in chloroplasts and then inactivating multiple enzymes in the Calvin cycle.  相似文献   
88.
Douglas F. Covey 《Steroids》2009,74(7):577-585
Membrane receptors are often modulated by steroids and it is necessary to distinguish the effects of steroids at these receptors from effects occurring at nuclear receptors. Additionally, it may also be mechanistically important to distinguish between direct effects caused by binding of steroids to membrane receptors and indirect effects on membrane receptor function caused by steroid perturbation of the membrane containing the receptor. In this regard, ent-steroids, the mirror images of naturally occurring steroids, are novel tools for distinguishing between these various actions of steroids. The review provides a background for understanding the different actions that can be expected of steroids and ent-steroids in biological systems, references for the preparation of ent-steroids, a short discussion about relevant forms of stereoisomerism and the requirements that need to be fulfilled for the interaction between two molecules to be enantioselective. The review then summarizes results of biophysical, biochemical and pharmacological studies published since 1992 in which ent-steroids have been used to investigate the actions of steroids in membranes and/or receptor-mediated signaling pathways.  相似文献   
89.
Protein tyrosine nitration, protein oxidation and lipid peroxidation are nitrative/oxidative modification of protein and lipids. In this paper, a BSA (bovine serum albumin)-lecithin liposome system was used to study the nature of different forms of iron, including methemoglobin, hemin and ferric citrate, in catalyzing H2O2-nitrite system to oxidize protein and lipid as well as nitrate protein. It was found that in pH range of 5.0-9.0, in pure BSA solution or pure liposome solution, hemin and methemoglobin catalyzed protein tyrosine nitration and lipid peroxidation were decreased with the increasing of pH, while hemin and methemoglobin catalyzed protein oxidation was significantly and moderately increased, respectively. Lipid completely inhibited hemin catalyzed protein tyrosine nitration but only partially inhibited methemoglobin catalyzed protein tyrosine nitration, and its inhibitory effect on hemin induced protein oxidation was also more pronounced. In addition, BSA showed more efficient in inhibiting hemin and ferric citrate induced lipid peroxidation. At the same condition, ferric citrate was relatively ineffective in all tests. Considering protein tyrosine nitration, protein oxidation and lipid oxidation as overall oxidative damage, these results indicated that methemoglobin is more toxic than hemin and ferric citrate, the degradation procedure of heme containing macromolecules, e.g. hemoglobin to hemin and finally to low molecular weight bounded iron, is step by step detoxification. These results provide fundamental knowledge on oxidative/nitrative of biomolecules in lipid-protein coexistence system.  相似文献   
90.
Lipid rafts/caveolae as microdomains of calcium signaling   总被引:1,自引:1,他引:0  
Ca2+ is a major signaling molecule in both excitable and non-excitable cells, where it serves critical functions ranging from cell growth to differentiation to cell death. The physiological functions of these cells are tightly regulated in response to changes in cytosolic Ca2+ that is achieved by the activation of several plasma membrane (PM) Ca2+ channels as well as release of Ca2+ from the internal stores. One such channel is referred to as store-operated Ca2+ channel that is activated by the release of endoplasmic reticulum (ER) Ca2+ which initiates store-operated Ca2+ entry (SOCE). Recent advances in the field suggest that some members of TRPCs and Orai channels function as SOCE channels. However, the molecular mechanisms that regulate channel activity and the exact nature of where these channels are assembled and regulated remain elusive. Research from several laboratories has demonstrated that key proteins involved in Ca2+ signaling are localized in discrete PM lipid rafts/caveolar microdomains. Lipid rafts are cholesterol and sphingolipid-enriched microdomains that function as unique signal transduction platforms. In addition lipid rafts are dynamic in nature which tends to scaffold certain signaling molecules while excluding others. By such spatial segregation, lipid rafts not only provide a favorable environment for intra-molecular cross-talk but also aid to expedite the signal relay. Importantly, Ca2+ signaling is shown to initiate from these lipid raft microdomains. Clustering of Ca2+ channels and their regulators in such microdomains can provide an exquisite spatiotemporal regulation of Ca2+-mediated cellular function. Thus in this review we discuss PM lipid rafts and caveolae as Ca2+-signaling microdomains and highlight their importance in organizing and regulating SOCE channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号