首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4004篇
  免费   96篇
  国内免费   52篇
  2024年   3篇
  2023年   19篇
  2022年   34篇
  2021年   74篇
  2020年   48篇
  2019年   54篇
  2018年   72篇
  2017年   42篇
  2016年   39篇
  2015年   101篇
  2014年   242篇
  2013年   290篇
  2012年   174篇
  2011年   244篇
  2010年   277篇
  2009年   220篇
  2008年   214篇
  2007年   236篇
  2006年   185篇
  2005年   154篇
  2004年   159篇
  2003年   144篇
  2002年   109篇
  2001年   40篇
  2000年   56篇
  1999年   68篇
  1998年   50篇
  1997年   41篇
  1996年   53篇
  1995年   61篇
  1994年   57篇
  1993年   26篇
  1992年   42篇
  1991年   28篇
  1990年   24篇
  1989年   32篇
  1988年   23篇
  1987年   33篇
  1986年   16篇
  1985年   28篇
  1984年   71篇
  1983年   68篇
  1982年   69篇
  1981年   39篇
  1980年   38篇
  1979年   29篇
  1978年   8篇
  1977年   5篇
  1976年   4篇
  1970年   2篇
排序方式: 共有4152条查询结果,搜索用时 218 毫秒
51.
Adipocyte size is closely related to the occurrence of diabetes, metabolic syndrome, and insulin resistance. Thus, researchers are searching for active substances that function to reduce adipocyte size. In the present study, we focused on sugar cane vinegar, Kibizu, and evaluated the function of Kibizu to reduce adipocyte size by using an in vitro model system, because people in Amami Oshima famous for longevity regularly consume Kibizu. Results showed that Kibizu treatment significantly reduced the size and number of lipid droplets in 3T3-L1 cells, relative to treatment with Kurozu, another traditional vinegar. Results of an extraction experiment suggest that the active components in Kibizu are lipophilic and hydrophobic. In addition, an in vivo experiment on rats treated with Kibizu showed that the active components were contained in large vein blood. Results of an additional in vivo experiment suggest that metabolites generated by Kibizu-treated rats are primarily contained or modified specifically in the large vein blood.  相似文献   
52.
Desorption electrospray ionization may be used as a fast and convenient method for analysis and identification of lipids in the cell culture. Oxidative stress, which usually involves changes in lipids, was used as a model of pathology to show the utility of this analysis methodology. This paper addresses the surface preparation of cell culture slides, induction of oxidative stress, and cell monolayer culture preparation as well as optimization of the analysis. Advantages and drawbacks of the method were also discussed.  相似文献   
53.
In this study, distribution of metal accumulation and their biological changes of Indian mustard plants (Brassica nigra L.) grown in soil irrigated with different concentration of rayon grade paper effluent (RGPE, 25%, 50%, 75%, 100%, v/v) were studied. A pronounced effect was recorded at 50% (v/v) RGPE on germination of seeds, amylase activity and other growth parameters in Indian mustard plants. An increase in the chlorophyll and protein contents was also recorded at <50% (v/v) RGPE followed by a decrease at higher concentrations of RGPE (>75%). A significant increase lipid peroxidation was recorded, which was evidenced by the increased malondialdehyde (MDA) content in shoot, leaves and seeds in tested plant at all the concentrations of RGPE. This Indian mustard plants (Brassica nigra L.) are well adapted for tolerance of significant amount of heavy metals due to increased level of antioxidants (cysteine and ascorbic acid) in root shoot and leaves of treated plants at all concentration of RGPE. Moreover, it is also important that RGPE should be treated to bring down the metal concentration well within the prescribed limit prior to use in agricultural soil for ferti-irrigation.  相似文献   
54.
心血管病是我国成年人致死的最主要的疾病,而脂代谢异常是心血管疾病的独立危险因素。因此,阐述研究揭示脂代谢异常在心血管疾病发生发展中的作用及其机制,具有重要的理论意义和临床实用价值。本期专题主要一方面综合评述了脂蛋白组分与脂质代谢,以及甘氨酸的心血管疾病保护作用等相关领域的研究新进展,同时并分别展示了国内学者有关于PCSK9/LDLR通路、模拟人apoE结构域的小分子多肽EpK、多不饱和脂肪酸、脂联素、LXRα- ABCA1途径和普罗布考等在脂代谢中的作用及相应分子机制等方面的研究成果,以期让更多的人进一步深入了解脂质代谢以及,了解心血管病发病的复杂机制和及研究现状。  相似文献   
55.
The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed endoplasmic reticulum (ER)-resident calcium channel. Calcium release mediated by IP3Rs influences many signaling pathways, including those regulating apoptosis. IP3R activity is regulated by protein-protein interactions, including binding to proto-oncogenes and tumor suppressors to regulate cell death. Here we show that the IP3R binds to the tumor suppressor BRCA1. BRCA1 binding directly sensitizes the IP3R to its ligand, IP3. BRCA1 is recruited to the ER during apoptosis in an IP3R-dependent manner, and, in addition, a pool of BRCA1 protein is constitutively associated with the ER under non-apoptotic conditions. This is likely mediated by a novel lipid binding activity of the first BRCA1 C terminus domain of BRCA1. These findings provide a mechanistic explanation by which BRCA1 can act as a proapoptotic protein.  相似文献   
56.
The effects of lipids on membrane proteins are likely to be complex and unique for each membrane protein. Here we studied different detergent/phosphatidylcholine reconstitution media and tested their effects on plasma membrane Ca2+ pump (PMCA). We found that Ca2+-ATPase activity shows a biphasic behavior with respect to the detergent/phosphatidylcholine ratio. Moreover, the maximal Ca2+-ATPase activity largely depends on the length and the unsaturation degree of the hydrocarbon chain. Using static light scattering and fluorescence correlation spectroscopy, we monitored the changes in hydrodynamic radius of detergent/phosphatidylcholine particles during the micelle-vesicle transition. We found that, when PMCA is reconstituted in mixed micelles, neutral phospholipids increase the enzyme turnover. The biophysical changes associated with the transition from mixed micelles to bicelles increase the time of residence of the phosphorylated intermediate (EP), decreasing the enzyme turnover. Molecular dynamics simulations analysis of the interactions between PMCA and the phospholipid bilayer in which it is embedded show that in the 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer, charged residues of the protein are trapped in the hydrophobic core. Conversely, in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer, the overall hydrophobic-hydrophilic requirements of the protein surface are fulfilled the best, reducing the thermodynamic cost of exposing charged residues to the hydrophobic core. The apparent mismatch produced by a 1,2-dioleoyl-sn-glycero-3-phosphocholine thicker bilayer could be a structural foundation to explain its functional effect on PMCA.  相似文献   
57.
Type I anti-CD20 mAb such as rituximab and ofatumumab engage with the inhibitory FcγR, FcγRIIb on the surface of B cells, resulting in immunoreceptor tyrosine-based inhibitory motif (ITIM) phosphorylation. Internalization of the CD20·mAb·FcγRIIb complex follows, the rate of which correlates with FcγRIIb expression. In contrast, although type II anti-CD20 mAb such as tositumomab and obinutuzumab also interact with and activate FcγRIIb, this interaction fails to augment the rate of CD20·mAb internalization, raising the question of whether ITIM phosphorylation plays any role in this process. We have assessed the molecular requirements for the internalization process and demonstrate that in contrast to internalization of IgG immune complexes, FcγRIIb-augmented internalization of rituximab-ligated CD20 occurs independently of the FcγRIIb ITIM, indicating that signaling downstream of FcγRIIb is not required. In transfected cells, activatory FcγRI, FcγRIIa, and FcγRIIIa augmented internalization of rituximab-ligated CD20 in a similar manner. However, FcγRIIa mediated a slower rate of internalization than cells expressing equivalent levels of the highly homologous FcγRIIb. The difference was maintained in cells expressing FcγRIIa and FcγRIIb lacking cytoplasmic domains and in which the transmembrane domains had been exchanged. This difference may be due to increased degradation of FcγRIIa, which traffics to lysosomes independently of rituximab. We conclude that the cytoplasmic domain of FcγR is not required for promoting internalization of rituximab-ligated CD20. Instead, we propose that FcγR provides a structural role in augmenting endocytosis that differs from that employed during the endocytosis of immune complexes.  相似文献   
58.
The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains.  相似文献   
59.
15-Hydroxyprostaglandin dehydrogenase (15PGDH) is the primary enzyme catalyzing the conversion of hydroxylated arachidonic acid species to their corresponding oxidized metabolites. The oxidation of hydroxylated fatty acids, such as the conversion of prostaglandin (PG) E2 to 15-ketoPGE2, by 15PGDH is viewed to inactivate signaling responses. In contrast, the typically electrophilic products can also induce anti-inflammatory and anti-proliferative responses. This study determined that hydroxylated docosahexaenoic acid metabolites (HDoHEs) are substrates for 15PGDH. Examination of 15PGDH substrate specificity was conducted in cell culture (A549 and primary human airway epithelia and alveolar macrophages) using chemical inhibition and shRNA knockdown of 15PGDH. Substrate specificity is broad and relies on the carbon position of the acyl chain hydroxyl group. 14-HDoHE was determined to be the optimal DHA substrate for 15PGDH, resulting in the formation of its electrophilic metabolite, 14-oxoDHA. Consistent with this, 14-HDoHE was detected in bronchoalveolar lavage cells of mild to moderate asthmatics, and the exogenous addition of 14-oxoDHA to primary alveolar macrophages inhibited LPS-induced proinflammatory cytokine mRNA expression. These data reveal that 15PGDH-derived DHA metabolites are biologically active and can contribute to the salutary signaling actions of Ω-3 fatty acids.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号