首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1479篇
  免费   98篇
  国内免费   2篇
  2023年   6篇
  2022年   12篇
  2021年   42篇
  2020年   21篇
  2019年   35篇
  2018年   37篇
  2017年   33篇
  2016年   63篇
  2015年   66篇
  2014年   80篇
  2013年   109篇
  2012年   106篇
  2011年   153篇
  2010年   53篇
  2009年   70篇
  2008年   96篇
  2007年   81篇
  2006年   73篇
  2005年   70篇
  2004年   55篇
  2003年   51篇
  2002年   53篇
  2001年   21篇
  2000年   15篇
  1999年   13篇
  1998年   14篇
  1997年   10篇
  1996年   7篇
  1995年   5篇
  1994年   4篇
  1993年   8篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   5篇
  1988年   3篇
  1987年   7篇
  1985年   4篇
  1984年   8篇
  1983年   3篇
  1981年   5篇
  1979年   4篇
  1978年   5篇
  1977年   10篇
  1976年   4篇
  1975年   9篇
  1974年   13篇
  1973年   6篇
  1971年   4篇
  1968年   3篇
排序方式: 共有1579条查询结果,搜索用时 31 毫秒
81.
The i-motif DNA tetrameric structure is formed of two parallel duplexes intercalated in a head-to-tail orientation, and held together by hemiprotonated cytosine pairs. The four phosphodiester backbones forming the structure define two narrow and wide grooves. The short interphosphate distances across the narrow groove induce a strong repulsion which should destabilize the tetramer. To investigate this point, molecular dynamics simulations were run on the [d(C2)]4 and [d(C4)]4 tetramers in 3'E and 5'E topologies, for which the interaction of the phosphodiester backbones through the narrow groove is different. The analysis of the simulations, using the Molecular Mechanics Generalized Born Solvation Area and Molecular Mechanics Poisson-Boltzmann Solvation Area approaches, shows that it is the van der Waals energy contribution which displays the largest relative difference between the two topologies. The comparison of the solvent-accessible area of each topology reveals that the sugar-sugar interactions account for the greater stability of the 3'E topology. This stresses the importance of the sugar-sugar contacts across the narrow groove which, enforcing the optimal backbone twisting, are essential to the base stacking and the i-motif stability. Tighter interactions between the sugars are observed in the case of N-type sugar puckers.  相似文献   
82.
Jetha KA  Egginton S  Nash GB 《Biorheology》2003,40(5):567-576
Increase in the resistance to deformation of neutrophils upon exposure to the cold may impair their passage through microvessels. However, the potential for such rheological changes to cause prolonged microvascular obstruction in cooled tissue will depend on whether and at what rate the neutrophils recover on rewarming. We tested the ability of neutrophils to pass through micropore filters, and found that neutrophils cooled to 10 degrees C for 10-20 minutes could block either 5 microm or 8 microm pore filters. On return to 37 degrees C, flow resistance remained impaired briefly but recovered over about 5 minutes. The kinetics of changes in flow resistance in the cold and on rewarming were linked to kinetics of actin polymerisation during these periods. However, they were not closely linked to distortion of cell shape in the cold, which recovered only slowly with rewarming. The results suggest that while rigid neutrophils might occlude capillaries in cold tissue, mechanical obstruction should not be long-lived on rewarming. Moreover, rigid neutrophils washed out of cold tissue should experience only temporary mechanical trapping in remote tissues.  相似文献   
83.
Recent studies demonstrated that 2,3-dihydroxybiphenyl 1,2-dioxygenase from Burkholderia sp. strain LB400 (DHBDLB400; EC 1.13.11.39) cleaves chlorinated 2,3-dihydroxybiphenyls (DHBs) less specifically than unchlorinated DHB and is competitively inhibited by 2',6'-dichloro-2,3-dihydroxybiphenyl (2',6'-diCl DHB). To determine whether these are general characteristics of DHBDs, we characterized DHBDP6-I and DHBDP6-III, two evolutionarily divergent isozymes from Rhodococcus globerulus strain P6, another good polychlorinated biphenyl (PCB) degrader. In contrast to DHBDLB400, both rhodococcal enzymes had higher specificities for some chlorinated DHBs in air-saturated buffer. Thus, DHBDP6-I cleaved the DHBs in the following order of specificity: 6-Cl DHB > 3'-Cl DHB approximately DHB approximately 4'-Cl DHB > 2'-Cl DHB > 4-Cl DHB > 5-Cl DHB. It also cleaved its preferred substrate, 6-Cl DHB, three times more specifically than DHB. Interestingly, some of the worst substrates for DHBDP6-I were among the best for DHBDP6-III (4-Cl DHB > 5-Cl DHB approximately 6-Cl DHB approximately 3'-Cl DHB > DHB > 2'-Cl DHB approximately 4'-Cl DHB; DHBDP6-III cleaved 4-Cl DHB two times more specifically than DHB). Generally, each of the monochlorinated DHBs inactivated the enzymes more rapidly than DHB. The exceptions were 4-Cl DHB for DHBDP6-I and 2'-Cl DHB for DHBDP6-III. As observed in DHBDLB400, chloro substituents influenced the reactivity of the dioxygenases with O2. For example, the apparent specificities of DHBDP6-I and DHBDP6-III for O2 in the presence of 2'-Cl DHB were lower than those in the presence of DHB by factors of >60 and 4, respectively. DHBDP6-I and DHBDP6-III shared the relative inability of DHBDLB400 to cleave 2',6'-diCl DHB (apparent catalytic constants of 0.088 +/- 0.004 and 0.069 +/- 0.002 s(-1), respectively). However, these isozymes had remarkably different apparent K(m) values for this compound (0.007 +/- 0.001, 0.14 +/- 0.01, and 3.9 +/- 0.4 micro M for DHBDLB400, DHBDP6-I, and DHBDP6-III, respectively). The markedly different reactivities of DHBDP6-I and DHBDP6-III with chlorinated DHBs undoubtedly contribute to the PCB-degrading activity of R. globerulus P6.  相似文献   
84.
The metabotropic glutamate receptors (mGluRs) have been predicted to have a classical seven transmembrane domain structure similar to that seen for members of the G-protein-coupled receptor (GPCR) superfamily. However, the mGluRs (and other members of the family C GPCRs) show no sequence homology to the rhodopsin-like GPCRs, for which this seven transmembrane domain structure has been experimentally confirmed. Furthermore, several transmembrane domain prediction algorithms suggest that the mGluRs have a topology that is distinct from these receptors. In the present study, we set out to test whether mGluR5 has seven true transmembrane domains. Using a variety of approaches in both prokaryotic and eukaryotic systems, our data provide strong support for the proposed seven transmembrane domain model of mGluR5. We propose that this membrane topology can be extended to all members of the family C GPCRs.  相似文献   
85.
This work demonstrated the constitutive expressionof peroxisome proliferator-activated receptor (PPAR)- and PPAR-in rat synovial fibroblasts at both mRNA and protein levels. A decrease in PPAR- expression induced by 10 µg/ml lipopolysaccharide (LPS) was observed, whereas PPAR- mRNA expression was not modified. 15-Deoxy-12,14-prostaglandin J2(15d-PGJ2) dose-dependently decreased LPS-induced cyclooxygenase (COX)-2 (80%) and inducible nitric oxide synthase (iNOS) mRNA expression (80%), whereas troglitazone (10 µM) only inhibited iNOS mRNA expression (50%). 15d-PGJ2 decreasedLPS-induced interleukin (IL)-1 (25%) and tumor necrosis factor(TNF)- (40%) expression. Interestingly, troglitazone stronglydecreased TNF- expression (50%) but had no significant effect onIL-1 expression. 15d-PGJ2 was able to inhibitDNA-binding activity of both nuclear factor (NF)-B and AP-1.Troglitazone had no effect on NF-B activation and was shown toincrease LPS-induced AP-1 activation. 15d-PGJ2 andtroglitazone modulated the expression of LPS-induced iNOS, COX-2, andproinflammatory cytokines differently. Indeed, troglitazone seems tospecifically target TNF- and iNOS pathways. These results offer newinsights in regard to the anti-inflammatory potential of the PPAR-ligands and underline different mechanisms of action of15d-PGJ2 and troglitazone in synovial fibroblasts.

  相似文献   
86.
Trypsin and mast cell tryptase can signal to epithelial cells, myocytes, and nerve fibers of the respiratory tract by cleaving proteinase-activated receptor 2 (PAR2). Since tryptase inhibitors are under development to treat asthma, a precise understanding of the contribution of PAR2 to airway inflammation is required. We examined the role of PAR2 in allergic inflammation of the airway by comparing OVA-sensitized and -challenged mice lacking or overexpressing PAR2. In wild-type mice, immunoreactive PAR2 was detected in airway epithelial cells and myocytes, and intranasal administration of a PAR2 agonist stimulated macrophage infiltration into bronchoalveolar lavage fluid. OVA challenge of immunized wild-type mice stimulated infiltration of leukocytes into bronchoalveolar lavage and induced airway hyperreactivity to inhaled methacholine. Compared with wild-type animals, eosinophil infiltration was inhibited by 73% in mice lacking PAR2 and increased by 88% in mice overexpressing PAR2. Similarly, compared with wild-type animals, airway hyperreactivity to inhaled methacholine (40 micro g/ml) was diminished 38% in mice lacking PAR2 and increased by 52% in mice overexpressing PAR2. PAR2 deletion also reduced IgE levels to OVA sensitization by 4-fold compared with those of wild-type animals. Thus, PAR2 contributes to the development of immunity and to allergic inflammation of the airway. Our results support the proposal that tryptase inhibitors and PAR2 antagonists may be useful therapies for inflammatory airway disease.  相似文献   
87.
Drosophila Mi-2 (dMi-2) is the ATPase subunit of a complex combining ATP-dependent nucleosome remodelling and histone deacetylase activities. dMi-2 contains an HMG box-like region, two PHD fingers, two chromodomains and a SNF2-type ATPase domain. It is not known which of these domains contribute to nucleosome remodelling. We have tested a panel of dMi-2 deletion mutants in ATPase, nucleosome mobilization and nucleosome binding assays. Deletion of the chromodomains impairs all three activities. A dMi-2 mutant lacking the chromodomains is incorporated into a functional histone deacetylase complex in vivo but has lost nucleosome-stimulated ATPase activity. In contrast to dHP1, dMi-2 does not bind methylated histone H3 tails and does not require histone tails for nucleosome binding. Instead, the dMi-2 chromodomains display DNA binding activity that is not shared by other chromodomains. Our results suggest that the chromodomains act at an early step of the remodelling process to bind the nucleosome substrate predominantly via protein-DNA interactions. Furthermore, we identify DNA binding as a novel chromodomain-associated activity.  相似文献   
88.
We investigated the occurrence of gene conversions between paralogous sequences of Salmoninae derived from ancestral tetraploidization and their effect on the evolutionary history of DNA sequences. A microsatellite with long flanking regions (750 bp) including both coding and noncoding sequences was analyzed. Microsatellite size polymorphism was used to detect the alleles of both paralogous counterparts and infer linkage arrangement between loci. DNA sequencing of seven Salmoninae species revealed that paralogous sequences were highly differentiated within species, especially for noncoding regions. Ten gene conversion events between paralogous sequences were inferred. While these events appears to have homogenized regions of otherwise highly differential paralogous sequences, they amplified the differentiation among orthologous sequences. Their effects were larger on coding than on noncoding regions. As a consequence, noncoding sequences grouped by orthologous lineages in phylogenetic trees, whereas coding regions grouped by taxa. Based upon these results, we present a model showing how gene conversion events may also result in the PCR amplification of nonorthologous sequences in different taxa, with obvious complications for phylogenetic inferences, comparative mapping, and population genetic studies. Received: 11 October 2000 / Accepted: 18 September 2001  相似文献   
89.
90.
The initiation of enteroviral positive-strand RNA synthesis requires the presence of a functional ribonucleoprotein complex containing a cloverleaf-like RNA secondary structure at the 5' end of the viral genome. Other components of the ribonucleoprotein complex are the viral 3CD proteinase (the precursor protein of the 3C proteinase and the 3D polymerase), the viral 3AB protein and the cellular poly(rC)-binding protein 2. For a molecular characterization of the RNA-binding properties of the enteroviral proteinase, the 3C proteinase of coxsackievirus B3 (CVB3) was bacterially expressed and purified. The recombinant protein is proteolytically active and forms a stable complex with in vitro-transcribed cloverleaf RNA of CVB3. The formation of stable complexes is also demonstrated with cloverleaf RNA of poliovirus (PV) 1, the first cloverleaf of bovine enterovirus (BEV) 1, and human rhinovirus (HRV) 2 but not with cloverleaf RNA of HRV14 and the second cloverleaf of BEV1. The apparent dissociation constants of the protein:RNA complexes range from approx. 1.7 to 4.6 microM. An electrophoretic mobility shift assay with subdomain D of the CVB3 cloverleaf demonstrates that this RNA is sufficient to bind the CVB3 3C proteinase. Binding assays using mutated versions of CVB3 and HRV14 cloverleaf RNAs suggest that the presence of structural features rather than a defined sequence motif of loop D are important for 3C proteinase-RNA interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号