首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   28篇
  2023年   4篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   4篇
  2018年   5篇
  2017年   7篇
  2016年   6篇
  2015年   19篇
  2014年   18篇
  2013年   15篇
  2012年   19篇
  2011年   13篇
  2010年   10篇
  2009年   7篇
  2008年   3篇
  2007年   13篇
  2006年   8篇
  2005年   8篇
  2004年   3篇
  2003年   10篇
  2002年   3篇
  2001年   6篇
  2000年   12篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   7篇
  1990年   6篇
  1989年   2篇
  1988年   7篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有259条查询结果,搜索用时 250 毫秒
81.
Nutrient availability, in particular of phosphorus (P), is a key factor for the structure and functioning of shallow lakes, and not least the sediment plays an important role by acting as both a nutrient source and sink. We used 21 years of monthly mass balance and lake water data from six shallow (mean depth = 1.2–2.7 m) and fast flushed (mean hydraulic retention time = 0.6–2.6 months) eutrophic Danish lakes (mean summer P concentrations ranging from 0.09 to 0.61 mg/l) to investigate long-term trends in yearly and seasonal patterns of P retention. To one of the lakes, the external P input was reduced by 70% in the early 1990s, whereas none of the other lakes have experienced major changes in external P loading for more than 20 years. All lakes showed a distinct seasonal pattern with high P concentrations and typically negative P retention during summer (up to ?300% of the external loading from May to August). During winter, P retention was overall positive (up to 50% of the external loading from December to April). Internal P loading from the sediment delayed lake recovery by approximately 10 years in the lake with the most recently reduced external loading, but in all the lakes net release of P from the sediment occurred during summer. P release in the six lakes has not abated during the past decade, indicating that the sediment of eutrophic and turbid shallow lakes remains a net source of P during summer. The seasonal variations in P retention became more pronounced with increasing P levels, and retention decreased with increasing temperature, but increased if clear water conditions were established.  相似文献   
82.
The use of the CEN (European Committee for Standardization) standard method for sampling fish in lakes using multi-mesh gillnets allowed the collection of fish assemblages of 445 European lakes in 12 countries. The lakes were additionally characterised by environmental drivers and eutrophication proxies. Following a site-specific approach including a validation procedure, a fish index including two abundance metrics (catch per unit effort expressed as fish number and biomass) and one functional metric of composition (abundance of omnivorous fish) was developed. Correlated with the proxy of eutrophication, this index discriminates between heavily and moderately impacted lakes. Additional analyses on a subset of data from Nordic lakes revealed a stronger correlation between the new fish index and the pressure data. Despite an uneven geographical distribution of the lakes and certain shortcomings in the environmental and pressure data, the fish index proved to be useful for ecological status assessment of lakes applying standardised protocols and thus supports the development of national lake fish assessment tools in line with the European Water Framework Directive.  相似文献   
83.
How substrate affects periphyton biomass and nutrient state at different, but high, nutrient levels was tested in three large enclosures in a hypereutrophic subtropical shallow lake. We compared periphytic characteristics (1) on three hard substrates (stone, bamboo, and wood) incubated for 2 weeks and 1 year, respectively, to investigate the existence of the influences of substrate type at hypereutrophic levels, and (2) on artificial plants with contrasting (parvopotamid-like and myriophyllid-like) soft substrate morphology. In general, periphytic biomass and nutrient state were sensitive to variations in nutrient level, incubation time, hard substrate type (except 2-week incubated) and substrate morphology, but to a varying extent. The periphyton nutrient content increased with increasing nutrient levels on most substrates. Long-time incubated substrates supported more periphytic biomass, had a higher nutrient content and autotrophic proportion, while the effect of nutrient level on nutrient content in the periphyton was independent of incubation time. The effects of hard substrate type on periphyton characteristics were much weaker than those of nutrient level. By contrast, the effects of soft substrate morphology on periphyton biomass and carbon: nutrient ratios surpassed those of nutrient level. Chlorophyll a, dry mass, and ash free dry mass were much higher on parvopotamid than on myriophyllid substrates. Our results show that periphyton biomass and nutrient state are influenced by both substrate and nutrient level even in hypereutrophic lakes, which might have cascading effects on the benthic food web.  相似文献   
84.
85.
With the implementation of the EU Water Framework Directive (WFD), the member states have to classify the ecological status of surface waters following standardised procedures. It was a matter of some surprise to lake ecologists that zooplankton were not included as a biological quality element (BQE) despite their being considered to be an important and integrated component of the pelagic food web. To the best of our knowledge, the decision of omitting zooplankton is not wise, and it has resulted in the withdrawal of zooplankton from many so-far-solid monitoring programmes. Using examples from particularly Danish, Estonian, and the UK lakes, we show that zooplankton (sampled from the water and the sediment) have a strong indicator value, which cannot be covered by sampling fish and phytoplankton without a very comprehensive and costly effort. When selecting the right metrics, zooplankton are cost-efficient indicators of the trophic state and ecological quality of lakes. Moreover, they are important indicators of the success/failure of measures taken to bring the lakes to at least good ecological status. Therefore, we strongly recommend the EU to include zooplankton as a central BQE in the WFD assessments, and undertake similar regional calibration exercises to obtain relevant and robust metrics also for zooplankton as is being done at present in the cases of fish, phytoplankton, macrophytes and benthic invertebrates.  相似文献   
86.
Climate change might have profound effects on the nitrogen (N) dynamics in the cultivated landscape as well as on N transport in streams and the eutrophication of lakes. N loading from land to streams is expected to increase in North European temperate lakes due to higher winter rainfall and changes in cropping patterns. Scenario (IPCC, A2) analyses using a number of models of various complexity for Danish streams and lakes suggest an increase in runoff and N transport on an annual basis (higher during winter and typically lower during summer) in streams, a slight increase in N concentrations in streams despite higher losses in riparian wetlands, higher absolute retention of N in lakes (but not as percentage of loading), but only minor changes in lake water concentrations. However, when taking into account also a predicted higher temperature there is a risk of higher frequency and abundance of potentially toxic cyanobacteria in lakes and they may stay longer during the season. Somewhat higher risk of loss of submerged macrophytes at increased N and phosphorus (P) loading and a shift to dominance of small-sized fish preying upon the key grazers on phytoplankton may also enhance the risk of lake shifts from clear to turbid in a warmer North European temperate climate. However, it must be emphasised that the prediction of N transport and thus effects is uncertain as the prediction of regional precipitation and changes in land-use is uncertain. By contrast, N loading is expected to decline in warm temperate and arid climates. However, in warm arid lakes much higher N concentrations are currently observed despite reduced external loading. This is due to increased evapotranspiration leading to higher nutrient concentrations in the remaining water, but may also reflect a low-oxygen induced reduction of nitrification. Therefore, the critical N as well as P loading for good ecological state in lakes likely has to be lower in a future warmer climate in both north temperate and Mediterranean lakes. To obtain this objective, adaptation measures are required. In both climate zones the obvious methods are to change agricultural practices for reducing the loss of nutrients to surface waters, to improve sewage treatment and to reduce the storm-water nutrient runoff. In north temperate zones adaptations may also include re-establishment of artificial and natural wetlands, introduction of riparian buffer zones and re-meandering of channelised streams, which may all have a large impact on, not least, the N loading of lakes. In the arid zone, also restrictions on human use of water are urgently needed, not least on the quantity of water used for irrigation purposes.  相似文献   
87.
While the structuring role of fish in lakes is well studied for the summer season in North temperate lakes, little is known about their role in winter when fish activity and light irradiance potentially are lower. This is unfortunate as the progressing climate change may have strong effects on lake winter temperature and possibly on trophic dynamics too. We conducted an enclosure experiment with and without the presence of fish throughout winter in two shallow lakes with contrasting phosphorus concentrations. In hypertrophic Lake Søbygård, absence of fish led to higher biomass of zooplankton, higher grazing potential (zooplankton:phytoplankton ratio) and, accordingly, lower biomass of phytoplankton and chlorophyll a (Chl a), while the concentrations of total nitrogen (TN), total phosphorus (TP), oxygen and pH decreased. The average size of egg-bearing Daphnia and Bosmina and the minimum size of egg-bearing specimens of the two genera rose. In the less eutrophic Lake Stigsholm, zooplankton and their grazing potential were also markedly affected by fish. However, the decrease in Chl a was slight, and phytoplankton biovolume, pH and the oxygen concentration were not affected. TN was higher when fish were absent. Our results indicate that: (i) there is a notable effect of fish on zooplankton community structure and size during winter in both eutrophic and hypertrophic North temperate lakes, (ii) Chl a can be high in winter in such lakes, despite low light irradiance, if fish are abundant, and (iii) the cascading effects on phytoplankton and nutrients in winter may be more pronounced in hypertrophic lakes. Climate warming supposedly leading to reduced winter mortality and dominance of small fish may enhance the risk of turbid state conditions in nutrient-enriched shallow lakes, not only during the summer season, but also during winter.  相似文献   
88.
Major efforts have been made world-wide to improve the ecological quality of shallow lakes by reducing external nutrient loading. These have often resulted in lower in-lake total phosphorus (TP) and decreased chlorophyll a levels in surface water, reduced phytoplankton biomass and higher Secchi depth. Internal loading delays recovery, but in north temperate lakes a new equilibrium with respect to TP often is reached after <10–15 years. In comparison, the response time to reduced nitrogen (N) loading is typically <5 years. Also increased top-down control may be important. Fish biomass often declines, and the percentage of piscivores, the zooplankton:phytoplankton biomass ratio, the contribution of Daphnia to zooplankton biomass and the cladoceran size all tend to increase. This holds for both small and relatively large lakes, for example, the largest lake in Denmark (40 km2), shallow Lake Arresø, has responded relatively rapidly to a ca. 76% loading reduction arising from nutrient reduction and top-down control. Some lakes, however, have proven resistant to loading reductions. To accelerate recovery several physico-chemical and biological restoration methods have been developed for north temperate lakes and used with varying degrees of success. Biological measures, such as selective removal of planktivorous fish, stocking of piscivorous fish and implantation or protection of submerged plants, often are cheap versus traditional physico-chemical methods and are therefore attractive. However, their long-term effectiveness is uncertain. It is argued that additional measures beyond loading reduction are less cost-efficient and often not needed in very large lakes. Although fewer data are available on tropical lakes these seem to respond to external loading reductions, an example being Lake Paranoá, Brazil (38 km2). However, differences in biological interactions between cold temperate versus warm temperate-subtropical-tropical lakes make transfer of existing biological restoration methods to warm lakes difficult. Warm lakes often have prolonged growth seasons with a higher risk of long-lasting algal blooms and dense floating plant communities, smaller fish, higher aggregation of fish in vegetation (leading to loss of zooplankton refuge), more annual fish cohorts, more omnivorous feeding by fish and less specialist piscivory. The trophic structures of warm lakes vary markedly, depending on precipitation, continental or coastal regions locations, lake age and temperature. Unfortunately, little is known about trophic dynamics and the role of fish in warm lakes. Since many warm lakes suffer from eutrophication, new insights are needed into trophic interactions and potential lake restoration methods, especially since eutrophication is expected to increase in the future owing to economic development and global warming.  相似文献   
89.
The Gulf of California, Mexico, consists of unique environmental conditions resulting in a rich array of biological diversity. Nematodes are present in most marine sediments and are probably the most abundant metazoans. This research analyses and compares nematode biodiversity in two shallow, littoral locations of the Gulf and compares the results with other Pacific and Atlantic faunae. Samples collected in Punta Estrella and Santa Clara were processed for nematode extraction by standard methods. A total of eighty genera were identified, sixty-seven occurring in coarser sediments at Punta Estrella and fifty-five in more silty sediments at Santa Clara. Nematode abundance was higher at the latter location, on average. The region was not especially high or low in diversity compared to other littoral sites, and was most similar to locations in Europe with a corresponding ecology but at temperate latitudes. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: K. Martens  相似文献   
90.
Y-shaped molecules bearing alkynylallylic moieties were found to be potent and selective PPARdelta activators. The alkynylallylic moiety was synthesized from alkyn-1-ols by hydroalumination followed by a cross-coupling reaction. Series of active compounds 6 were obtained by stepwise changing the structure of the known PPARpan agonist 5 into Y-shaped compounds. The most active and selective compound, 6f, had a PPARdelta potency of 0.13 microM, which is 50-fold more potent than compound 5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号