首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   28篇
  2023年   4篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   4篇
  2018年   5篇
  2017年   7篇
  2016年   6篇
  2015年   19篇
  2014年   18篇
  2013年   15篇
  2012年   19篇
  2011年   13篇
  2010年   10篇
  2009年   7篇
  2008年   3篇
  2007年   13篇
  2006年   8篇
  2005年   8篇
  2004年   3篇
  2003年   10篇
  2002年   3篇
  2001年   6篇
  2000年   12篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   7篇
  1990年   6篇
  1989年   2篇
  1988年   7篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有259条查询结果,搜索用时 31 毫秒
41.
Bacteriophage R17 RNA was labelled with 32P and was subjected to partial digestion with ribonuclease T1. The products were fractionated by ionophoresis on polyacrylamide gel. Two fragments were purified and their nucleotide sequences determined by methods involving complete and further partial digestion with ribonucleases A and T1. Fragment 20 had a sequence that coded for the amino acids in positions 32–53 of the coat protein of the bacteriophage. Fragment 20X, on further purification in 7m-urea, gave rise to two smaller nucleotides whose sequences coded for the amino acids in positions 56–66 and 67–76 of the coat protein. The sequence of the two fragments was such that they could be written in the form of loops stabilized by base-pairing.  相似文献   
42.
43.
44.
45.
46.
47.
A positive feedback between submerged vegetation and water clarity forms the backbone of the alternative state theory in shallow lakes. The water clearing effect of aquatic vegetation may be caused by different physical, chemical, and biological mechanisms and has been studied mainly in temperate lakes. Recent work suggests differences in biotic interactions between (sub)tropical and cooler lakes might result in a less pronounced clearing effect in the (sub)tropics. To assess whether the effect of submerged vegetation changes with climate, we sampled 83 lakes over a gradient ranging from the tundra to the tropics in South America. Judged from a comparison of water clarity inside and outside vegetation beds, the vegetation appeared to have a similar positive effect on the water clarity across all climatic regions studied. However, the local clearing effect of vegetation decreased steeply with the contribution of humic substances to the underwater light attenuation. Looking at turbidity on a whole-lake scale, results were more difficult to interpret. Although lakes with abundant vegetation (>30%) were generally clear, sparsely vegetated lakes differed widely in clarity. Overall, the effect of vegetation on water clarity in our lakes appears to be smaller than that found in various Northern hemisphere studies. This might be explained by differences in fish communities and their relation to vegetation. For instance, unlike in Northern hemisphere studies, we find no clear relation between vegetation coverage and fish abundance or their diet preference. High densities of omnivorous fish and coinciding low grazing pressures on phytoplankton in the (sub)tropics may, furthermore, weaken the effect of vegetation on water clarity.  相似文献   
48.
We have shown that stevioside (SVS) enhances insulin secretion and thus may have a potential role as antihyperglycemic agent in the treatment of type 2 diabetes mellitus. However, whether SVS stimulates basal insulin secretion (BIS) and/or cause desensitization of beta cells like sulphonylureas (SU), e.g. glibenclamide (GB), is not known. To explore and compare the effects of SVS pretreatment with those of GB and glucagon-like peptide-1 (GLP-1), we exposed isolated mouse islets to low or high glucose for 1 h after short-term (2 h) or long-term (24 h) pretreatment with SVS, GB or GLP-1, respectively. BIS at 3.3 or 5.5 mM glucose were not changed after short-term pretreatment with SVS (10(-7) M), while it increased about three folds after pretreatment with GB (10(-7) M). Glucose stimulated insulin secretion (GSIS) (16.7 mM) increased dose-dependently after long-term pretreatment with SVS at concentrations from 10(-7) to 10(-5) M. Pretreatment for 24 h with GB (10(-7) M) increased the subsequent BIS (3.3 mM glucose) (p < 0.001), but decreased GSIS (16.7 mM glucose) (p < 0.001). In contrast SVS (10(-7) M) and GLP-1 (10(-7) M) did not stimulate BIS but both enhanced the subsequent GSIS (16.7 mM glucose) (p < 0.05 and p < 0.05, respectively). While SVS pretreatment increased the intracellular insulin content, GB pretreatment decreased the insulin content. Our study suggests that SVS pretreatment does not cause a stimulation of BIS and does not desensitize beta-cells, i.e. SVS seems to have advantageous characteristics to GB as a potential treatment of type 2 diabetes.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号