首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   12篇
  国内免费   15篇
  2023年   7篇
  2022年   3篇
  2021年   14篇
  2020年   9篇
  2019年   9篇
  2018年   10篇
  2017年   5篇
  2016年   8篇
  2015年   9篇
  2014年   10篇
  2013年   8篇
  2012年   13篇
  2011年   12篇
  2010年   7篇
  2009年   5篇
  2008年   6篇
  2007年   12篇
  2006年   7篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有180条查询结果,搜索用时 15 毫秒
81.
An actin fringe structure in the subapex plays an important role in pollen tube tip growth. However, the precise mechanism by which the actin fringe is generated and maintained remains largely unknown. Here, we cloned a 2606-bp full-length cDNA encoding a deduced 77-kD fimbrin-like protein from lily (Lilium longiflorum), named FIMBRIN1 (FIM1). Ll-FIM1 was preferentially expressed in pollen and concentrated at actin fringe in the subapical region, as well as in longitudinal actin-filament bundles in the shank of pollen tubes. Microinjection of Ll-FIM1 antibody into lily pollen tubes inhibited tip growth and disrupted the actin fringe. Furthermore, we verified the function of Ll-FIM1 in the fim5 mutant of its closest relative, Arabidopsis thaliana. Pollen tubes of fim5 mutants grew with a larger diameter in early stages but could recover into normal forms in later stages, despite significantly slower growth rates. The actin fringe of the fim5 mutants, however, was impaired during both early and late stages. Impressively, stable expression of fim5pro:GFP:Ll-FIM1 rescued the actin fringe and the growth rate of Arabidopsis fim5 pollen tubes. In vitro biochemical analysis showed that Ll-FIM1 could bundle actin filaments. Thus, our study has identified a fimbrin that may stabilize the actin fringe by cross-linking actin filaments into bundles, which is important for proper tip growth of lily pollen tubes.  相似文献   
82.
83.
84.
Wang J  Xue X  Ren H 《Protoplasma》2012,249(Z2):S101-S107
Formins are well-known as important regulators participating in the organization of the actin cytoskeleton in organisms. For many years in the past, research on plant formins is more difficult than that in other eukaryotic formins and is limited to class I formins. Nevertheless, positive progress has been made in plant formin research recently, especially the investigations on class II formins. New functions of plant formins are identified gradually, such as regulating cell division and affecting diffuse cell expansion. More significantly, plant formins are also verified to interact with microtubules in vivo and in vitro. They may probably function as linking proteins between microtubules and microfilaments to participate in various cellular processes.  相似文献   
85.
Xu RY  Nan P  Pan H  Zhou T  Chen J 《Molecular biology reports》2012,39(3):2275-2283
A chalcone reductase (CHR) gene was isolated from Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao (A. mongholicus). The full-length cDNA of A. mongholicus CHR, designated as Amchr (GenBank accession No. HM357239), was 1196 bp long. It had a 957 bp open reading frame encoding a 318-amino acid protein of 35 kDa, a 67 bp 5′ non-coding region and a 172 bp 3′-untranslated region. The putative AmCHR protein showed striking similarity to CHR from other leguminous species. Two-dimensional structure modeling showed that AmCHR consisted of 45.28% α-helix, 10.38% extended strand and 44.34% random coil. Prediction showed that three-dimensional AmCHR was a global protein containing an aldo-ket-red domain, with a putative Asp-Tyr-Lys-His catalytic tetrad in the center. The AmCHR gene was 1251 bp long, consisting of three exons and two introns. Intron I was 125 bp and intron II was 169 bp long. Southern blot analysis indicated that Amchr belonged to a small multigene family. Under natural conditions, Amchr was expressed differentially in the root, stem and leaf tissues of A. mongholicus, with a preferential expression in the root. The recombinant AmCHR protein was successfully expressed in Escherichia coli strain BL21 with pET42a vector. The result showed that the expressed AmCHR protein had molecular weight of about 35 kDa, which matched the size of the predicted protein by bioinformatic analysis. This study opened avenues towards understanding of the function of AmCHR protein and the role of the Amchr gene in the calycosin-7-O-β-d-glucoside branch pathway in A. mongholicus.  相似文献   
86.
87.
Kong Y  Wu D  Bai H  Han C  Chen J  Chen L  Hu L  Jiang H  Shen X 《Journal of biochemistry》2008,143(1):59-68
Cystathionine gamma-synthase (CGS) catalyses the first step of the transsulfuration pathway that converts l-cysteine to l-homocysteine in bacteria, whereas this pathway is absent in human. In this report, we identified a new metB gene from Helicobacter pylori strain SS1, and the recombinant H. pylori Cystathionine gamma-synthase (HpCGS) was successfully cloned, expressed and purified in Escherichia coli system. Enzymatic study of HpCGS indicated that the K(m) and k(cat)/K(m) values against the substrate O-succinyl-l-homoserine (l-OSHS) were 3.02 mM and 98.7 M(-)(1)s(-)(1), respectively. Moreover, four natural products (alpha-lapachone, 9-hydroxy-alpha-lapachone, Paulownin and Yangambin, Fig. 1) were discovered to demonstrate inhibitory activities against HpCGS with IC(50) values of 11 +/- 3, 9 +/- 1, 19 +/- 2 and 27 +/- 6 microM, respectively. All these four inhibitors prevent the binding of l-OSHS to HpCGS in a non-competitive fashion. In vitro antibacterial assays further indicated that these four discovered compounds could highly inhibit the growth of H. pylori and exhibited strong inhibitory specificity against H. pylori related to E. coli.  相似文献   
88.
Chondroblastoma is a cartilaginous tumor that typically arises under 25 y of age (80%). Recent studies have identified a somatic and heterozygous mutation at the H3F3B gene in over 90% chondroblastoma cases, leading to a lysine 36 to methionine replacement (H3.3K36M). In human cells, H3F3B gene is one of 2 genes that encode identical H3.3 proteins. It is not known how H3.3K36M mutant proteins promote tumorigenesis. We and others have shown that, the levels of H3K36 di- and tri-methylation (H3K36me2/me3) are reduced dramatically in chondroblastomas and chondrocytes bearing the H3.3K36M mutation. Mechanistically, H3.3K36M mutant proteins inhibit enzymatic activity of some, but not all H3K36 methyltransferases. Chondrocytes harboring the same H3F3B mutation exhibited the cancer cell associated phenotypes. Here, we discuss the potential effects of H3.3K36M mutation on epigenomes including H3K36 and H3K27 methylation and cellular phenotypes. We suggest that H3.3K36M mutant proteins alter epigenomes of specific progenitor cells, which in turn lead to cellular transformation and tumorigenesis.  相似文献   
89.
Up-regulation of GluN2B-containing N-methyl-d-aspartate receptors (NMDARs) expression and trafficking is the key mechanism for remifentanil-induced hyperalgesia (RIH), nevertheless, the signaling pathway and pivotal proteins involved in RIH remain equivocal. PKMζ, an isoform of protein kinase C (PKC), maintains pain memory storage in neuropathic pain and inflammatory pain, which plays a parallel role regulated by NMDARs in long-term memory trace. In the present study, Zeta Inhibitory Peptide (ZIP), a PKMζ inhibitor, and a selective GluN2B antagonist Ro-256981 are injected intrathecally before remifentanil infusion (1 μg kg?1 min?1 for 1 h, iv) in order to detect whether GluN2B contributes to RIH through affecting synthesis and activity of PKMζ in spinal dorsal horn. Nociceptive tests are measured by Paw withdrawal mechanical threshold (PWT) and paw withdrawal thermal latency (PWL). The L4–L6 segments of dorsal horn taken from rats with RIH are for determining expression of PKMζ and pPKMζ by Western blot and immunohistochemistry. Our data suggest that remifentanil infusion causes an increase of PKMζ in expression and phosphorylation in rats with nociceptive sensitization, beginning at 2 h, peaked at 2 days, and returned to basal level at 7 days. ZIP (10 ng) could block behavioral sensitization induced by remifentanil. Ro25-6981 dosage-dependently attenuated mechanical and thermal hyperalgesia and reversed expression of PKMζ and pPKMζ, indicating that GluN2B-containing NMDA receptor facilitates development of RIH through mediating expression and activity of spinal PKMζ in rats. Although detailed mechanisms require further comprehensive study, the preventive role of Ro25-6981 and ZIP provide novel options for the effective precaution of RIH in clinics.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号