首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   4篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   7篇
  2012年   3篇
  2011年   9篇
  2010年   13篇
  2009年   10篇
  2008年   8篇
  2007年   12篇
  2006年   2篇
  2005年   4篇
  2004年   13篇
  2003年   5篇
  2002年   12篇
  2001年   8篇
  2000年   4篇
  1999年   10篇
  1998年   6篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   6篇
  1993年   9篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1974年   3篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1966年   3篇
排序方式: 共有206条查询结果,搜索用时 249 毫秒
71.
In Catharanthus roseus cell cultures, the monoterpenoid pathway has been shown to be a limiting factor in terpenoid indole alkaloid (TIA) production. This could be due to competition at the level of isopentenyl diphosphate::dimethylallyl diphosphate (C5) which leads to the biosynthesis of different terpenoid groups. For future engineering of the terpenoid pathway, chemical characterization of C. roseus cell cultures is a necessity. Therefore, in this study nine C. roseus cell suspension lines were characterized by analyzing the levels of the major terpenoids derived from different biosynthetic pathways which may compete for the same precursors; TIA (monoterpenoid, C10), carotenoids (tetraterpenoid, C40), and sterols (triterpenoid, C30). Among the cell lines, CRPP (S) was the most promising TIA-producing cell line which provided more TIA [24 μmol g?1 dry weight (DW)] than carotenoids (15 μmol g?1 DW) and sterols (2 μmol g?1 DW). However, when considering the distribution of the isopentenyl-precursor (C5), the carotenoids which assemble from 8× C5 represent twofold more C5-units (122 μmol g?1 DW) than the TIA in this cell line. In the CRPP (G), A12A2 (G), and A12A2 (S) cell lines, the C5 distribution was predominant toward carotenoid biosynthesis as well, resulting in a relatively high accumulation of carotenoids. The geranylgeranyl diphosphate (C20) pathway toward carotenoid production is therefore considered competitive toward TIA biosynthesis. For channeling more precursors to the TIA, the branch point for C10 and C20 seems an interesting target for metabolic engineering. Using principal component analysis of the chromatographic data, we characterized the cell lines chemically based on their metabolite levels. The information on the metabolic composition of C. roseus cell cultures is useful for developing strategies to engineer the metabolic pathways and for selection of cell lines for future studies.  相似文献   
72.
The identification of active ingredients in crude plant extracts offers great advantages. In this study, nuclear magnetic resonance and chemometrics were used for the screening of in vitro anti-TNF?? activity in different berry types. Solid phase extraction was applied and the resulting water, methanol?Cwater (1:1), and methanol fractions were tested for the activity. The methanol?Cwater fraction contained most of the phenolics and showed significantly higher activity than the other two fractions. In the second phase of this study, grapes from ??Trincadeira??, ??Touriga Nacional??, and ??Aragonês??, at four developmental stages were metabolically classified and tested for the TNF?? inhibition. The initial stages of grape development, green and veraison, were found more active against TNF?? production as compared to the later ripe and harvest stages. Among the cultivars, ??Touriga Nacional?? was found to be the most potent inhibitor. Different multivariate data analyses algorithms based on projections to latent structures were applied to correlate the NMR and TNF?? inhibition data. The variable importance in the projections plot showed that phenolics like quercetin, myricetin, (+)-catechin, (?)-epicatechin, caftarate, and coutarate, were positively correlated with high activity. This work demonstrates the great potential of NMR spectroscopy in combination with chemometrics for the screening of large set of crude extracts, to study the effects of different variables on the activity, and identifying active compounds in complex mixtures like plant extracts.  相似文献   
73.
NMR spectroscopy combined with principal component analysis was applied to Arabidopsis thaliana treated with methyl jasmonate in order to obtain macroscopic metabolic changes caused by the treatment. As the first step several chromatographic and NMR spectroscopic techniques were utilized to identify metabolites of Arabidopsis. Sephadex LH-20 showed a high efficiency in the separation of phenolic metabolites in the plant. For identification of minor metabolites two-dimensional J-resolved NMR technique was directly applied to the plant extract and results in a number of elucidation of the metabolites of which signals overlap in 1H NMR spectra. The chemical structure of the identified metabolites were confirmed by various two-dimensional NMR spectroscopy including correlated spectroscopy, heteronuclear single quantum coherence, and heternuclear multiple bond correlation. As next step, a statistical approach, principal component analysis based on projected J-resolved NMR spectra was performed for metabolic alteration of methyl jasmonate-treated Arabidopsis. The results show that methyl jasmonate caused an increase of flavonoids, fumaric acid, sinapoyl malate, sinigrin, tryptophan, valine, threonine, and alanine and a decrease of malic acid, feruloyl malate, glutamine, and carbohydrates after 24 h treatment.  相似文献   
74.
Passiflora garckei cell cultures were used as a model to describe a reproducible sample preparation method. Solid phase extraction (SPE) was employed to isolate the plant metabolites for nuclear magnetic resonance (NMR) analysis and to subsequently detect the differences between yeast extract elicited and control cells. Compared with previous results obtained by using a Sephadex LH-20 column, SPE coupled with NMR spectroscopy improves the analysis of aromatic compounds e.g.: trans-feruloyl derivatives and trans-coumaroyl derivatives. Moreover, it decreases the concentration of sugars that usually overlap with many plant metabolite signals.  相似文献   
75.
Comparative proteomics of Cannabis sativa plant tissues.   总被引:4,自引:0,他引:4  
Comparative proteomics of leaves, flowers, and glands of Cannabis sativa have been used to identify specific tissue-expressed proteins. These tissues have significantly different levels of cannabinoids. Cannabinoids accumulate primarily in the glands but can also be found in flowers and leaves. Proteins extracted from glands, flowers, and leaves were separated using two-dimensional gel electrophoresis. Over 800 protein spots were reproducibly resolved in the two-dimensional gels from leaves and flowers. The patterns of the gels were different and little correlation among the proteins could be observed. Some proteins that were only expressed in flowers were chosen for identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and peptide mass fingerprint database searching. Flower and gland proteomes were also compared, with the finding that less then half of the proteins expressed in flowers were also expressed in glands. Some selected gland protein spots were identified: F1D9.26-unknown prot. (Arabidopsis thaliana), phospholipase D beta 1 isoform 1a (Gossypium hirsutum), and PG1 (Hordeum vulgare). Western blotting was employed to identify a polyketide synthase, an enzyme believed to be involved in cannabinoid biosynthesis, resulting in detection of a single protein.  相似文献   
76.
Geraniol 10-hydroxylase (G10H) is a cytochrome P450 monooxygenase involved in the biosynthesis of iridoid monoterpenoids and several classes of monoterpenoid alkaloids found in a diverse range of plant species. Catharanthus roseus (Madagascar periwinkle) contains monoterpenoid indole alkaloids, several of which are pharmaceutically important. Vinblastine and vincristine, for example, find widespread use as anti-cancer drugs. G10H is thought to play a key regulatory role in terpenoid indole alkaloid biosynthesis. We purified G10H from C. roseus cells. Using degenerate PCR primers based on amino acid sequence information we cloned the corresponding cDNA. The encoded CYP76B6 protein has G10H activity when expressed in C. roseus and yeast cells. The stress hormone methyljasmonate strongly induced G10h gene expression coordinately with other terpenoid indole alkaloid biosynthesis genes in a C. roseus cell culture.  相似文献   
77.
With the aim of quantifying intra- and extracellular carbohydrates media and cell-extracts from a Tabernaemontana divaricata plant cell-suspension culture were investigated with 1H-NMR.For suppression of the solvent peak the Meiboom-Gill modification of the Carr-Purcell (CPMG) spin-echo sequence was used after addition of a paramagnetic relaxation agent (Mn2+) to the sample. Several aspects of this method were optimized (the manganese concentration, the interpulse delay and the number of spin-echo cycles) so as to obtain a rapid and easy method in which no pretreatment of media or cell-extracts was needed. Besides the speed and ease of the method, also the direct identification of carbohydrates and other main components is an advantage.The exhaustion of extracellular carbohydrates was found to coincide with the maximum amount of intracellular carbohydrates. The intracellular carbohydrates, i.e. glucose and fructose, were consumed at a low rate, during several weeks.Abbreviations 1H-NMR proton nuclear magnetic resonance - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   
78.
Using the methods reported by De Fossard et al. (11) the influence of various media constituents on the growth and the alkaloid and anthraquinone production in Cinchona ledgeriana callus cultures was studied. Growth and indole alkaloid production (e.g. cinchonamine) was improved by higher auxin levels. The best growth was observed in the light, although many media resulted in no growth at all in the light. Anthraquinone production was highest at lower auxin levels. Quinoline alkaloid levels (e.g. quinidine) were highest in media with low auxin concentrations. Low and medium cytokinin concentration benefited the quinoline alkaloid production.From the results it was concluded that the pathways leading to the various secondary products, anthraquinones, indole alkaloids and quinoline alkaloids are, at least partly, regulated independently.Abbreviations used IAA indol-acetic acid - IBA indol-butyric acid - NAA -naphtaleneacetic acid - NOA 2-naphtoxy-acetic acid - 2,4-D 2,4-dichlorophenoxy-acetic acid - pCPA parachlorophenoxy-acetic acid - BA benzyladenine  相似文献   
79.
The effects of alcohols on human glycophorin were monitored by circular dichroism, solvent perturbation of absorption spectra, fluorescence of 8-anilino-1-naphthalene sulfonate, and sedimentation equilibrium in the ultracentrifuge. Both ethanol and 2-chloroethanol gradually increase the alpha helix in glycophorin and its sialic acid free counterpart. The same alcohols do not cause a cooperative transition in the structure of the polypeptide chain of glycophorin. Other alcohols also increase the alpha-helix content of glycophorin. Binding of ANS to glycophorin is abolished at relatively low alcohol concentrations. Ethanol at 60% (v/v) reduces the molecular weight ratio of glycophorin and at the same time increases the exposure of tyrosine residues to solvent. These observations indicate a complex mechanism of interaction of weakly protic solvents with this stable membrane protein.  相似文献   
80.
Cinchona officinalis 'Ledgeriana', former called Cinchona ledgeriana, hairy roots were initiated containing constitutive-expression constructs of cDNAs encoding the enzymes tryptophan decarboxylase (TDC) and strictosidine synthase (STR) from Catharanthus roseus, two key enzymes in terpenoid indole and quinoline alkaloid biosynthesis. The successful integration of these genes and the reporter gene gus-int was demonstrated using Southern blotting and the polymerase chain reaction. The products of TDC and STR, tryptamine and strictosidine, were found in high amounts, 1200 and 1950 μg g–1 dry weight, respectively. Quinine and quinidine levels were found to rise up to 500 and 1000 μg g–1 dry weight, respectively. The results show that genetic engineering with multiple genes is well possible in hairy roots of C. officinalis. However, 1 year after analyzing the hairy roots for the first time, they had completely lost their capacity to accumulate alkaloids. Received: 15 October 1997 / Accepted after revision: 21 March 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号