首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2479篇
  免费   425篇
  国内免费   526篇
  2024年   2篇
  2023年   115篇
  2022年   83篇
  2021年   133篇
  2020年   181篇
  2019年   186篇
  2018年   160篇
  2017年   150篇
  2016年   174篇
  2015年   155篇
  2014年   137篇
  2013年   162篇
  2012年   127篇
  2011年   139篇
  2010年   93篇
  2009年   124篇
  2008年   136篇
  2007年   132篇
  2006年   122篇
  2005年   81篇
  2004年   87篇
  2003年   93篇
  2002年   84篇
  2001年   55篇
  2000年   61篇
  1999年   54篇
  1998年   59篇
  1997年   52篇
  1996年   48篇
  1995年   40篇
  1994年   22篇
  1993年   19篇
  1992年   30篇
  1991年   19篇
  1990年   24篇
  1989年   19篇
  1988年   14篇
  1987年   10篇
  1986年   12篇
  1985年   9篇
  1984年   5篇
  1983年   5篇
  1982年   4篇
  1981年   6篇
  1980年   2篇
  1978年   1篇
  1975年   1篇
  1958年   3篇
排序方式: 共有3430条查询结果,搜索用时 15 毫秒
61.
We review the evidence of how organisms and populations are currently responding to climate change through phenotypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter their gene expression and metabolism to increase the concentrations of several antistress compounds and to change their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and microevolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hindered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade‐offs and links with population structure warrant further research. The application of omic techniques to ecological studies will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feedbacks on climate of all these changes in vegetation are also poorly understood. We here review the evidence of responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between climate change and life.  相似文献   
62.
Human activities are decreasing biodiversity and changing the climate worldwide. Both global change drivers have been shown to affect ecosystem functioning, but they may also act in concert in a non‐additive way. We studied early‐stage litter mass loss rates and soil microbial properties (basal respiration and microbial biomass) during the summer season in response to plant species richness and summer drought in a large grassland biodiversity experiment, the Jena Experiment, Germany. In line with our expectations, decreasing plant diversity and summer drought decreased litter mass loss rates and soil microbial properties. In contrast to our hypotheses, however, this was only true for mass loss of standard litter (wheat straw) used in all plots, and not for plant community‐specific litter mass loss. We found no interactive effects between global change drivers, that is, drought reduced litter mass loss rates and soil microbial properties irrespective of plant diversity. High mass loss rates of plant community‐specific litter and low responsiveness to drought relative to the standard litter indicate that soil microbial communities were adapted to decomposing community‐specific plant litter material including lower susceptibility to dry conditions during summer months. Moreover, higher microbial enzymatic diversity at high plant diversity may have caused elevated mass loss of standard litter. Our results indicate that plant diversity loss and summer drought independently impede soil processes. However, soil decomposer communities may be highly adapted to decomposing plant community‐specific litter material, even in situations of environmental stress. Results of standard litter mass loss moreover suggest that decomposer communities under diverse plant communities are able to cope with a greater variety of plant inputs possibly making them less responsive to biotic changes.  相似文献   
63.
Abstract

The Iberian Peninsula hosts six native pine species, which are distributed according to an altitudinal gradient from coastal to mountain areas, close to 1000 m a.s.l. Root hydraulic responses are the key factors of spatial segregation of trees in response to environmental factors such as temperature and water availability, and they will be a determinant of future population and species spatial dynamics in a changing climate scenario. Root hydraulic responses to soil water temperatures ranging from 30°C to 0°C were compared for young plants of these six aforementioned species. Hydraulic resistance (Rh) increased for all species in response to temperature decrease. Mountain pines showed higher Rh values than coastal pines at all temperatures, and showed a more prompt and marked hydraulic response when temperatures dropped down. Data point out that mountain pines display a clear mechanism to avoid cold embolism and secondary water stress, while coastal species have a limited responsiveness to temperature changes due to scarce hydraulic regulation. These differences in hydraulic behaviour support the spatial segregation between mountain and coastal pines in the Iberian Peninsula, and will be one of the factors at the basis of the future shifts of species and populations that will be associated to climate change.  相似文献   
64.
Abstract

Photosynthesis and photoprotective mechanisms were investigated in the field on Laurus nobilis L. and Quercus ilex L. leaves exposed to summer drought (July) and winter cold (February) conditions compared with no-stress conditions (May). In July, net photosynthetic rate (A) and stomatal conductance (g s) decreased significantly compared with May in both species; conversely the highest ETR/A ratio and no difference in non-photochemical quenching (NPQ) was observed. In February A, g s and ETR/A declined compared with May but the highest NPQ were found in both species. Our data suggest that during summer, an increase of photochemical alternative pathways to carbon reduction, were able to effectively protect the photosynthetic apparatus under drought. In winter, the thermal dissipation of excess absorbed light constitutes the main safety valve for the photosynthetic apparatus.  相似文献   
65.
ABSTRACT

Drought responses, leaf area index (LAI), leaf characteristics and light extinction coefficient (k) were analysed in thinned and unthinned Turkey oak (Quercus cerris L.) stands at two sites: Valsavignone, in the Apennines, with a mild climate, and Caselli, near the Tyrrhenian coast, with a longer and more accentuated dry period in the summer. Turkey oak showed a good adaptability to drought due to a series of modifications in leaf characteristics, canopy properties and biomass allocation such as leaf area reduction, increased leaf thickness, smaller number of leaves and, at stand level, lower LAI, leaf biomass and LWR values and higher light extinction coefficients. In spite of the better environmental conditions and the higher LAI values, productivity was lower in the wet site. The differences in Turkey oak canopy properties, light extinction coefficients, LAI and their relations with drought and productivity are discussed.  相似文献   
66.
细菌冷休克蛋白cspB是原核生物RNA的分子伴侣,含有原始型的冷休克结构域,具有与核酸结合功能,可以防止RNase对mRNA的降解,也能纠正mRNA的折叠错误.为了寻找作物改良的潜在基因资源,从枯草芽孢杆菌XS-01基因组中克隆出cspB基因,并与pBI121构建成pBI121-cspB植物表达载体.利用叶圆盘转化法转化烟草,通过卡那霉素筛选和PCR、Southern杂交鉴定5个转化体株系.除TN010外,其他转基因株系在外观形态与野生亲本的没有差别,但TN001和TN011育性降低,TN010和TN012则完全丧失育性.干旱处理结果表明,转基因植株在土壤水分恢复后10d,其平均单株干物质质量较之野生亲本的显著增加;叶片光合速率测定结果表明,在干旱处理时,转基因植株和对照亲本叶片光合速率均显著下降,在土壤水分恢复后,转基因植株的光合速率能快速恢复,但对照亲本的恢复缓慢.实验结果说明,cspB能够促进植物细胞从逆境伤害中快速恢复功能.  相似文献   
67.
Unveiling the genetic basis of local adaptation to environmental variation is a major goal in molecular ecology. In rugged landscapes characterized by environmental mosaics, living populations and communities can experience steep ecological gradients over very short geographical distances. In lowland tropical forests, interspecific divergence in edaphic specialization (for seasonally flooded bottomlands and seasonally dry terra firme soils) has been proven by ecological studies on adaptive traits. Some species are nevertheless capable of covering the entire span of the gradient; intraspecific variation for adaptation to contrasting conditions may explain the distribution of such ecological generalists. We investigated whether local divergence happens at small spatial scales in two stands of Eperua falcata (Fabaceae), a widespread tree species of the Guiana Shield. We investigated Single Nucleotide Polymorphisms (SNP) and sequence divergence as well as spatial genetic structure (SGS) at four genes putatively involved in stress response and three genes with unknown function. Significant genetic differentiation was observed among sub‐populations within stands, and eight SNP loci showed patterns compatible with disruptive selection. SGS analysis showed genetic turnover along the gradients at three loci, and at least one haplotype was found to be in repulsion with one habitat. Taken together, these results suggest genetic differentiation at small spatial scale in spite of gene flow. We hypothesize that heterogeneous environments may cause molecular divergence, possibly associated to local adaptation in E. falcata.  相似文献   
68.
全球气候变化将增加未来高温与干旱的发生频率和强度,然而高温与干旱的交互作用对农作物生长、养分含量及其利用效率的影响还不甚清楚。因此,研究高温与干旱交互作用对农作物生理生态的影响将为准确评价农作物对未来极端气候条件的响应提供科学依据。选取全球第四大经济作物——西红柿为研究对象,在人工智能气候箱中模拟高温和干旱环境。共设置两个水分处理(正常浇水;干旱)与两个温度处理(常温-26℃/19℃(白天/夜间);高温-42℃/35℃(白天/夜间)(7d))。主要测定指标包括生物量以及生物量分配、比叶面积、养分含量(全氮、全磷)、光合元素利用效率(光合氮素利用效率、光合磷素利用效率)。研究表明,高温、干旱单独作用以及交互作用均显著降低了根、茎、叶生物量以及总生物量,并且高温干旱交互作用使总生物量降低最多。在生物量分配方面,高温单独作用显著降低了根质量分数以及根冠比,而干旱单独作用增加了根质量分数、茎质量分数以及根冠比,但降低了叶质量分数。在养分含量方面,高温单独作用导致叶片全氮、全磷含量显著降低、茎全磷含量显著增加、根全磷含量显著降低。干旱单独作用导致叶片、茎全磷含量显著降低、根全氮含量显著升高。高温与干旱交互作用对生物量分配及养分含量的影响与干旱胁迫单独作用类似。在光合元素利用效率方面,高温、干旱单独作用均降低了幼苗光合氮素利用效率、光合磷素利用效率,并且高温加剧了干旱对光合磷素利用效率的影响。因此,在未来气候变化情况下,高温与干旱交互作用可能会对农作物产生更大威胁。  相似文献   
69.
70.
为探究水通道蛋白(AQP)在沙蒿响应干旱胁迫中的作用机制,该研究以青海省柴达木盆地沙蒿为试验材料,采用RACE技术对其AQP基因进行扩增,获得沙蒿AQP全长克隆并对AQP蛋白进行结构预测和分析;采用qRT-PCR对沙蒿AQP基因在不同程度干旱胁迫以及不同组织部位的表达模式进行分析。结果表明:(1)成功克隆获得沙蒿AQP基因长746 bp的片段1和长534 bp的片段2,经拼接后得到全长cDNA序列,沙蒿AQP基因总长为864 bp。(2)亚细胞定位表明沙蒿AQP基因定位于细胞膜上;同源比对显示沙蒿与向日葵、莴苣、橡胶树等植物的AQP基因具有较高的相似性;结构预测表明AQP蛋白含6个跨膜螺旋结构且亲水性较弱,α螺旋和无规则卷曲为AQP蛋白二级结构的主要构成元件。(3)qRT-PCR分析表明,沙蒿AQP基因随着干旱胁迫的加重呈现有规律的变化,根、茎、叶中表达均上调,且叶中AQP基因表达量上调幅度最大。研究表明沙蒿AQP基因结构特征及其表达模式都是沙蒿对干旱胁迫的一种适应。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号